Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Понятие умозаключения. Структура.

Умозаключения является следующей после суждений по степени сложности разновидностью абстрактных объектов. Рассмотрим наиболее важные традиционные представления об умозаключениях, составляющие содержательную основу современной формальной теории умозаключений. Под умозаключением обычно понимается некая форма мышления, посредством которой осуществляется умственный переход (называемый «выводом») от одного или нескольких суждений (называемых «посылками») к какому-либо другому суждению (называемому «заключением»). Из этого интуитивного представления об умозаключениях трудно понять, что представляют собой умозаключения как особая разновидность абстрактных объектов. Что есть форма мышления в отличие от самого вывода, т. е. перехода от посылок к заключению? Всегда ли такой вывод является логически обоснованным? На эти и многие другие вопросы нельзя дать четкий ответ, не уточнив исходное интуитивное представление об умозаключениях.

С учетом сделанных разъяснений относительно понятий и суждений можно дать следующее определение умозаключений:

Умозаключение- сложный абстрактный объект, в котором с помощью определенных отношений объединены в единое целое одно или несколько суждений.

Литературным вариантом определения 1. является следующее определение:

Умозаключение - абстрактная взаимосвязь суждений, постигаемая с помощью рационального мышления.

В определении 1. выражение «определенных отношений» указывает на то, что имеются в виду не любые, а некоторые вполне конкретные отношения между суждениями. Пока же на основе этого определения важно прояснить общие содержательные представления об умозаключениях (прежде всего соответствующий материал аристотелевской формальной логики), принимая во внимание, что эти «определённые отношения» известны и в соответствующий момент будут точно формализованы.

Из определения 1. вытекает следующее немаловажное следствие: умозаключения как таковые нельзя смешивать с выражающими их символами (подобно тому как понятия как таковые нельзя смешивать с именами понятий, а суждения - с выражающими их высказываниями). Несмотря на свою очевидность, данное следствие фактически не учитывается в традиционной формальной логике. В зависимости от контекста слова «умозаключение», «силлогизм» часто используются применительно и к самим умозаключениям, и к именам умозаключений. Такая неоднозначность словоупотребления недопустима и в современной логике устраняется, с одной стороны, путем явного указания на то, что умозаключения суть абстрактные объекты, а с другой стороны, путем использования слова «силлогизм» применительно только к именам умозаключений, а не к самим умозаключениям.

Иначе говоря, дополнительно к определению 1. принимается следующее определение:

Силлогизм- сложный символ, используемый с целью обозначения (именования, указания) умозаключения.

Разницу между умозаключением и силлогизмом легко пояснить на конкретном примере. Пусть имеется утверждение:

Петр не политик, так как он не властолюбив, а все политики властолюбивы. (2)

С одной стороны, здесь имеется конкретный силлогизм-само выражение «Петр не политик, так как он не властолюбив, а все политики властолюбивы». С другой стороны, это выражение имеет смысл, некоторое вполне определенное абстрактное содержание. Это содержание, рассматриваемое как непосредственный объект мышления, и есть конкретное умозаключение.

Силлогизм 2. относится к числу неформализованных (естественноязыковых) силлогизмов, структура которых лишь приблизительно отражает логическую структуру соответствующего умозаключения. Более точно отражают структуру умозаключений формализованные силлогизмы, строящиеся по синтаксическим правилам того или иного формального языка логики.

Первые формализованные силлогизмы использовал Аристотель. Разработанная им силлогистика (теория формализованных силлогизмов) оказала существенное влияние на развитие античной и схоластической логики, послужила исходной основой для создания современной логической теории умозаключений.

Простой категорический силлогизм.

В силлогистике Аристотеля основной разновидностью формализованных силлогизмов являются простые категорические силлогизмы, которые можно определить так:

Простой категорический силлогизм- система трех логически взаимосвязанных высказываний, каждое из которых является высказыванием вида А (Все S есть Р), вида Е (Все S не есть Р), вида 1 (Некоторые S есть Р) или вида О (Некоторые S не есть Р).

Рассматриваемые силлогизмы относятся к числу дедуктивных силлогизмов, осуществляемый на основе дедукции- перехода от общего к частному, от утверждений большей степени общности к утверждениям меньшей степени общности..Логическая правильность таких силлогизмов может.быть доказана или опровергнута чисто логическими средствами, на основании тех или иных логических законов.

Общая структура простого категорического силлогизма такова:

(1) Первая посылка (высказывание вида А, Е, 1 или О)-

(2) Вторая посылка (высказывание вида А, Е, 0)

(3) Заключение (высказывания вида А, Е, 1, О).

В структуре сплошная черта символизирует логическую выводимость заключения из посылок (логический переход от (1), (2) к (3)).

Детальное понимание простых категорических силлогизмов предполагает знание следующих трех понятий: термин, фигура, модус силлогизма.

Под терминами силлогизма понимаются субъекты и предикаты высказываний, являющихся посылкам» или заключением силлогизма. При этом предикат заключения называется «большим термином»; субъект заключения - «меньшим термином»; термин силлогизма, входящий только в посылки, но не в заключение,-«средним термином». Соответственно посылка, содержащая больший термин, называется «большей посылкой», а посылка, содержащая меньший термин, - «меньшей посылкой». Например, в силлогизме

(1) Все самодовольные болтуны-утомительные собеседники

(2) Некоторые люди.-самодовольные болтуны С1

(3) Некоторые люди - утомительные собеседники

выражение «утомительные собеседники» есть больший термин (и, следовательно (1),-большая посылка); слово «люди», есть меньший термин (и, следовательно (2), - меньшая посылка), а выражение «самодовольные болтуны» является средним термином, так как входит только в посылки, но не в заключение.

Расположение посылок в силлогизме может быть произвольным: в качестве первой посылки можно взять как большую посылку (в этом случае второй посылкой будет меньшая посылка), так и меньшую посылку (в этом случае второй посылкой будет большая посылка). Иначе говоря, подобно тому как при сложении от перестановки слагаемых не меняется их арифметическая сумма, в любом силлогизме от перестановки местами большей и меньшей посылок не изменяется их логическая сумма.

В зависимости от положения среднего термина различают четыре фигуры силлогизма (схемы силлогизмов с фиксированным положением среднего термина в посылках): в 1-й фигуре средний термин является субъектом в большей и предикатом в меньшей посылке; во 2-й фигуре средний термин является предикатом в обеих посылках; в 3-й фигуре - субъектом в обеих посылках; в 4-й фигуре - предикатом в большей и субъектом в меньшей посылке.

Легко заметить, например, что силлогизм С1 имеет первую фигуру: средний термин «самодовольные болтуны» является субъектом большей посылки и предикатом меньшей посылки.

Наконец, под модусами силлогизмов понимаются такие схемы силлогизмов, в которых фиксирована не только фигура, но и конкретный вид посылок и заключения. Один и тот же модус силлогизма преобразуется в различные конкретные силлогизмы путем замены символов «S», «Р», «М» соответствующими конкретными терминами силлогизма.

Все львы - хищники

Все хищники - животные

Все львы - животные

Все президенты - политики

Все политики властолюбивы

Все президенты властолюбивы.

заключения; следующая за буквами цифра, указывает на соответствующую фигуру силлогизма). Аналогичным образом Могут быть проиллюстрированы и другие модусы.

Варьируя формы А, Е, 1, О для каждой из двух посылок и заключения, можно построить 64 различных модуса для каждой конкретной фигуры (4 х 4х4 = 64). Поскольку самих фигур четыре, всего имеется 256 теоретически возможных модусов простого категорического силлогизма (64 х 4 = 256). В традиционной формальной логике все 256 модусов изучены достаточно полно. Установлено, в частности, какие из этих модусов являются логически правильными, а какие - нет. Что же такое логически правильный модус?

Логически правильные модусы. Понятие логически правильного модуса тесно связано с понятием истинности, но не тождественно ему. Логически правильный модус силлогизма есть модус, гарантирующий для соответствующих ему конкретных силлогизмов истинность заключения при условии истинности посылок. В противном случае модус является логически неправильным модусом.

Для каждого конкретного модуса силлогизма можно установить его правильность или неправильность, используя объемную интерпретацию высказываний с помощью кругов Эйлера. Так, модус 1. является логически правильным, а модус 2. логически неправильным модусом.

Модус 1 является логически правильным, так как логическая сумма посылок вида Все М - Р, Все S - М однозначно соответствует заключению вида Все S - Р.

В посылках заключение силлогизма может быть как истинным, так и ложным высказыванием. Так, в силлогизме

Все художники - люди

Все поэты - люди

Все поэты - художники,

соответствующем неправильному модусу 2, обе посылки истинны, а заключение ложно. Вместе с тем в силлогизме

Все художники - люди

Все поэты - люди

Некоторые поэты - художники,

модус 2 является логически неправильным (не является логически правильным), поскольку логическая сумма посылок Все Р - М, Все S-"М не соответствует однозначно заключению вида Bce S-P.

В силлогизмах, соответствующих логически неправильным модусам, нет какой-либо логической связи между истинностью посылок и истинностью заключения.

О логической правильности часто говорят применительно не только к конкретным модусам, но и к конкретным силлогизмам. Логически неправильный силлогизм есть силлогизм, соответствующий логически неправильному модусу силлогизма.

Всякий логически правильный силлогизм, у которого истинны посылки, обозначает некоторое целостное умозаключение (напр., силлогизм С2 или СЗ), в то время как любой логически неправильный силлогизм не обозначает какое-либо умозаключение, даже если истинны его посылки и заключение (напр., силлогизм С5). Иначе говоря, в случае логически неправильного силлогизма суждения, на которые указывают посылки и заключение (если, разумеется, речь идет об истинных посылках и истинном заключении), вместе не образуют целостный абстрактный объект.

Из 256 модусов простого, категорического силлогизма логически правильными являются лишь 24 модуса, среди которых 19 сильных модусов, а также 5 слабых модусов.

Всякий слабый модус отличается от соответствующего сильного модуса только тем, что в заключении слабого модуса вместо слова «все» используется слово «некоторые». При этом слово «некоторые» понимается не в узком, а в широком смысле.

Слабые модусы сводимы к соответствующим сильным модусам, но не наоборот.

Все юристы - люди С6

Ни один не человек не является юристом:

Силлогизм С6 логически правилен (что нетрудно показать с помощью кругов Эйлера), а кроме того, обозначает конкретное умозаключение (поскольку его посылка истинна).

Полисиллогизм есть соединение двух или более силлогизмов, в котором заключение одного силлогизма (так называемого «просиллогизма») является одной из посылок другого силлогизма (так называемого «эписиллогизма»).

 

2. Виды непосредственных умозаключений.

В процессе познания действительности мы приобретаем новые знания. Чтобы уяснить происхождение и сущность умозаключения, необходимо сопоставить два рода знаний, которыми мы располагаем и пользуемся в процессе своей жизнедеятельности, – непосредственные и опосредованные. Непосредственные знания – это те, которые получены нами с помощью органов чувств: зрения, слуха, обоняния и т.д.
Таковы, например, знания, выраженные суждениями типа “Дерево зеленое”, “Снег бел”, “Птица поет”, “Сосновый лес пахнет смолой”. Они составляют значительную часть всех наших знаний и служат их базой. Однако далеко не обо всем на свете мы можем судить непосредственно. Например, никто никогда не наблюдал, что в районе г. Солигорска некогда бушевало море. А знание об этом есть. Каким образом? Оно получено из других знаний. Дело в том, что в Солигорске обнаружены большие залежи соли, в пластах которой не редко обнаруживаются скелеты бесчисленных мелких морских организмов, которые могли накапливаться лишь на дне моря. Подобные знания, которые получены не прямо, непосредственно, а опосредованно, путем выведения из других знаний, называются опосредованными (или выводными). Логической формой их приобретения и служит умозаключение. В самом общем виде под ним подразумевается форма мышления, посредством которой из известного знания выводится новое знание.
Умозаключение – это форма мышления, посредством которой из одного или нескольких суждений выводится новое суждение.
Существование такой формы в нашем мышлении, как понятия и суждения, обусловлено самой объективной действительностью. Если в основе понятия лежит предметный характер действительности, а в основе суждения – связь (отношение) предметов, то объективную основу умозаключения составляет более сложная взаимная связь предметов, их взаимные отношения. Так, если один класс предметов (А) входит целиком в другой (В), но не исчерпывает его объема, то это означает необходимую обратную связь: более широкий класс предметов (В) включает в себя менее широкий (А) как свою часть, но не сводится к нему.
Например: “Все космонавты – мужественные люди”. Это означает: “Некоторые мужественные люди – космонавты”. Или более сложный случай взаимосвязи предметов мысли: если один класс предметов (А) входит в другой (В), а этот, в свою очередь, входит в третий (С), то отсюда следует, что первый (А) входит в третий (С).
Пример: “Если А. Леонов – космонавт, а все космонавты - мужественные люди, то А. Леонов – мужественный человек”.
Такова объективная возможность умозаключений: это структурный слепок с самой действительности, но в идеальной форме, в форме структуры мысли. А их объективная необходимость, как и понятий и суждений, тоже связана со всей практикой человечества. Удовлетворение одних потребностей людей и возникновение на этой основе других требует прогресса общественного производства, а он, в свою очередь, немыслим без прогресса знаний. Необходимым связующим звеном в осуществлении этого прогресса и выступают умозаключения как одна из форм перехода от известных знаний к новым.
Умозаключения весьма распространенная форма, используемая в научном и повседневном мышлении. Этим определяется их роль в познании и практике общения людей. Значение умозаключений состоит в том, что они не только связывают наши знания в более или менее сложные, относительно законченные комплексы – мыслительные конструкции, но и обогащают, усиливают эти знания.
Вместе с понятиями и суждениями умозаключения преодолевают ограниченность чувственного познания. Они оказываются незаменимыми там, где органы чувств бессильны: в постижении причин и условий возникновения какого-либо предмета или явления, его сущности и форм существования, закономерностей развития и т. д. Они участвуют в образовании понятий и суждений, которые нередко выступают как итог умозаключений, чтобы стать средством дальнейшего познания.
Умозаключения используются как способ познания прошлого, которое непосредственно наблюдать уже нельзя. Например, с их помощью получены фундаментальные знания о “большом взрыве” Вселенной, который произошел 10 – 20 млрд. лет назад; о становлении крупномасштабной структуры Вселенной, Галактик и их скоплений; о возникновении Солнечной системы и образовании Земли; о происхождении и сущности жизни на Земле; о возникновении и этапах развития человеческого общества. Историки общества по отдельным фрагментам, доступным нам, восстанавливают облик прошедших поколений людей, их образ жизни. Теоретики общества по бесчисленным появлениям общественной жизни познают глубинные закономерности ее экономического, социального, политического и духовного развития.
Умозаключения тем более важны для понимания будущего, которое наблюдать еще нельзя. В общественной жизни предвидения, прогнозы, цели человеческой деятельности тоже невозможны без определенных выводов – о тенденциях развития, действовавших в прошлом и действующих в настоящее время, прокладывающих путь в будущее.
На каждом шагу умозаключения производятся в повседневной жизни. Так, выглянув утром в окно и заметив мокрые крыши домов, мы делаем вывод о прошедшем ночью дожде, увидев, что день солнечный, мы заключаем, что сосновый лес теперь пахнет смолой. Наблюдая вечером багрово-красный закат, мы предполагаем на завтра ветреную погоду.
Выше говорилось, какую роль играют умозаключения в образовании понятий и суждений. А какую роль играют понятия и суждения в умозаключениях? Поскольку они входят в структуру умозаключений, важно установить здесь их логические функции. Так, нетрудно понять, что суждения выполняют функции либо посылок, либо заключения. Понятия же будучи терминами суждения, выполняют здесь функции терминов умозаключения. Если рассматривать познание диалектически, как процесс перехода с одной ступени знания на другую, более высокую, то не составит труда уяснить себе относительность деления суждений на посылки и заключение. Одно и то же суждение, будучи результатом (выводом) одного познавательного акта, становится исходным пунктом (посылкой) другого. Этот процесс можно уподобить строительству дома; один ряд бревен (или кирпичей), положенный на уже имеющееся основание, превращается тем самым в основание для другого, последующего ряда.
Аналогично обстоит дело и с понятиями – терминами умозаключения: одно и то же понятие может выступать то в роли субъекта, то в роли предиката посылки или заключения, то в роли посредствующего звена между ними. Так осуществляется бесконечный процесс познания.
Любое умозаключение состоит из посылок, заключения и вывода. Посылками умозаключения называются исходные суждения, из которых выводится новое суждение. Заключением называется новое суждение, полученное логическим путем из посылок. Логический переход от посылок к заключению называется выводом.
Например: “Судья не может участвовать в рассмотрении дела, если он является потерпевшим (1). Судья Н. – потерпевший (2). Значит, он не может участвовать в рассмотрении дела (3)”.
В этом умозаключении 1-е и 2-е суждения являются посылками, 3-е суждение – заключением.
Как и любая другая форма мышления, умозаключение, так или иначе, воплощается в языке. Если понятие выражается отдельным словом (или словосочетанием), а суждение – отдельным предложением (или сочетанием предложений), то умозаключение всегда есть связь нескольких (двух или более) предложений, хотя не всякая связь двух или более предложений – непременно умозаключение.
В русском языке эта связь выражается словами “следовательно”, “значит”, “таким образом” и другими, либо словами “потому что”, “так как”, “ибо” и т.п. Употребление тех или иных языковых средств не произвольно, а определяется порядком расположения посылок и заключения. Дело в том, что в живой речи, в отличие от учебника логики, этот порядок тоже является относительным. Умозаключение может завершаться заключением (выводом), но может и начинаться с него; наконец, вывод может находиться в середине умозаключения – между его посылками. И это естественно: ведь новизна заключения не психологическая, а логическая. Она не носит характера какой-то “приятной неожиданности” или счастливой случайности”, когда из произвольного сочетания, каких-то суждений вдруг что-то получилось. И она, конечно, не заложена изначально ни в одном из элементов исходного знания в отдельности, но потенциально, скрыто содержит во всей структуре этого знания в целом и проявляется лишь во взаимодействии ее элементов. Это можно сравнить с тем, как огонь не заключен ни в спичке, ни в коробке, взятых порознь, а вспыхивает лишь от трения одной о другую. Как здесь чтобы получить новое явление, требуется определенное действие, так и в мышлении, чтобы получить новое знание, требуется определенное умственное усилие: это и достигается посредством умозаключения.
Общее правило языкового выражения умозаключения таково: если заключение стоит после посылок, то перед ним ставятся слова “следовательно”, “значит”, “поэтому”, “итак”, “отсюда следует” и т.п. Если же заключение стоит перед посылками, то после него ставятся слова “потому что”, “так как”, “ибо”, “оттого что” и др. Если же, наконец, оно располагается между посылками, то и перед ним, и после него употребляются соответствующие слова одновременно.
Подобно всякому суждению, заключение может быть истинным и ложным. Но то и другое определяется здесь, как и в ложных суждениях, непосредственно отношением не к действительности, а, прежде всего к посылкам и их связи.
Отношение логического следования между посылками и заключением предполагает связь между посылками по содержанию. Если суждения не связаны по содержанию, то вывод из них невозможен. Например, из суждений: “Судья не может участвовать в рассмотрении дела, если он является потерпевшим” и “Обвиняемый имеет право на защиту” – нельзя получить заключения, так как эти суждения не имеют общего содержания и, следовательно, логически не связаны друг с другом.
При наличии содержательной связи между посылками мы можем получить в процессе рассуждения новое истинное знание при соблюдении двух условий: во-первых, должны быть истинными исходные суждения – посылки умозаключения; во-вторых, в процессе рассуждения следует соблюдать правила вывода, которые обусловливают логическую правильность умозаключения.
Обозревая практику мышления, можно обнаружить великое множество самых разнообразных видов и разновидностей умозаключений. Они различаются числом посылок – одна, две и более; типом суждений – простое или сложное; видом суждений – атрибутивное или с отношением; видом вывода – достоверный или вероятный и т.д. и т.п. Какой же из признаков положить в основу деления умозаключений на типы? Думается, мы поступим разумно, если будем исходить, прежде всего, из самой глубокой сущности этой формы мышления. Поскольку всякое умозаключение вообще, безотносительно к его формам, представляет собой логическое следование одних знаний из других, то в зависимости от характера логического следования, от направленности хода мысли в умозаключении можно выделить три коренных, фундаментальных типа, которые и будут положены в основу всего последующего анализа выводного знания. Это дедукция, индукция и традукция. Дедукция (от лат. deductio – выведение) – это умозаключение от более общего знания к менее общему.

Типичный пример дедукции, идущий от древности:
Все люди смертны
Сократ – человек.
Следовательно, Сократ смертен.
Индукция (от лат. inductio – наведение) – умозаключение от менее общего знания к более общему. Например: наблюдая за движением каждой из планет Солнечной системы, можно сделать общий вывод: “Все планеты движутся с Запада на Восток”.
Традукция (от лат. traductio – перевод, перемещение, перенос) – умозаключение, в котором посылки и заключение – одной и той же степени общности (умозаключение по аналогии).
Пример: “На Земле, где есть атмосфера, смена дня и ночи, времен года, есть также и жизнь. На Марсе, подобно Земле, есть атмосфера, смена дня и ночи, смена времен года. Возможно, что на Марсе тоже есть жизнь” (вывод, как будет показано в соответствующей главе, не подтвердился).
В зависимости от строгости правил вывода различают два вида умозаключений: демонстративные (необходимые) и недемонстративные (правдоподобные). Демонстративные умозаключения характеризуются тем, что заключение в них с необходимостью следует из посылок, т. е. логическое следование в такого рода выводах представляет собой логический закон. В недемонстративных умозаключениях правила вывода обеспечивают лишь вероятное следование заключения из посылок.
Дедуктивным (от латинского слова deductio– выведение) называется умозаключение, в котором переход от общего знания к частному является логически необходимым.
В зависимости от числа посылок, из которых можно сделать тот или иной вывод, дедуктивные умозаключения подразделяются, прежде всего, на непосредственные и опосредованные.
Непосредственные умозаключения – это такие, которые делаются из одной посылки. Опосредованные – те, которые делаются из нескольких (двух и более) посылок.
Непосредственные умозаключения можно получать, прежде всего, из простых суждений – как атрибутивных, так и реляционных (суждений с отношением). Правила дедуктивного вывода определяются характером посылок, которые могут быть простыми (категорическими) или сложными суждениями.
Суждение, содержащее новое знание, может быть получено посредством преобразования некоторого суждения. Поскольку исходное (преобразуемое) суждение рассматривается как посылка, а новое, полученное в результате преобразования суждение – как заключение, высказывания, построенные посредством преобразования суждений, называются непосредственными умозаключениями. К ним относятся: 1) превращение, 2) обращение, 3) противопоставление предикату, 4) умозаключения по логическому квадрату.
Выводы в каждом из этих умозаключений получаются в соответствии с определенными логическими правилами, которые обусловлены видом суждения – его количественной и качественной характеристиками.
1) Превращение. Превращение суждения состоит в установлении отношения субъекта к понятию, противоречащему предикату исходного суждения. Например, в исходном суждении “Н. (S) совершеннолетний (Р)” предикатом является понятие о лицах, достигших совершеннолетия. В понятии, противоречащем предикату, мыслятся лица, не достигшие совершеннолетия. Отношение Н. к несовершеннолетним следует, очевидно, выразить в форме отрицательного суждения “Н. (S) не является несовершеннолетним (не-Р)”.
Таким образом, из утвердительного суждения “S есть Р” мы получили отрицательное суждение “S не есть не-Р”. Заключение опирается на правило вывода: двойное отрицание равносильно утверждению.
Преобразование одного суждения в другое, противоположное по качеству с предикатом, противоречащим предикату исходного суждения, называется превращением.
Превращать можно общеутвердительные, общеотрицательные, частноутвердительные и частноотрицательные суждения.
Общеутвердительное суждение превращается в общеотрицательное. Например: “Всякий автомобиль - колесная машина. Следовательно, ни один автомобиль не является бесколесной машиной”.
Схема превращения суждения А:
Все S есть Р.
Ни одно S не есть не-Р
Общеотрицательное суждение превращается в общеутвердительное. Например: “Ни одно магическое учение не является научным. Следовательно, всякое магическое учение является ненаучным”.
Схема превращения суждения Е:
Ни одно S не есть Р.
Все S есть не-Р.
Частноутвердительное суждение превращается в частноотрицательное. Например: “Некоторые государства являются федеративными. Следовательно, некоторые государства не являются нефедеративными”.
Схема превращения суждения I:
Некоторые S есть P.
Некоторые S не есть не-Р.
Частноотрицательное суждение превращается в частноутвердительное. Например: “Некоторые преступления не являются умышленными. Следовательно, некоторые преступления являются неумышленными”.
Схема превращения суждения O:
Некоторые S не есть P.
Некоторые S есть не-Р.
2) Обращение. Для уточнения объема предиката суждения и его отношения к субъекту используют обращение, в результате которого субъектом становится предикат, а предикатом – субъект исходного суждения. Предметом нового суждения (заключения) становится, таким образом, предмет, выраженный не субъектом, а предикатом посылки.
Преобразование суждения, в результате которого субъект исходного суждения становится предикатом, а предикат – субъектом заключения, называется обращением.
Обращение подчиняется правилу распределенности терминов, согласно которому субъект распределен в общих и не распределен в частных суждениях, предикат распределен в отрицательных и не распределен в утвердительных суждениях. В соответствии с этим правилом различают простое (чистое) обращение и обращение с ограничением.
Простым (или чистым) называется обращение без изменения количества суждения. Так обращаются суждения, оба термина которых распределены или оба не распределены. Если же предикат исходного суждения не распределен, то он не может быть распределен и в заключении, где он является субъектом. Поэтому его объем ограничивается. Такое обращение называется обращением с ограничением.
Общеутвердительное суждение обращается в частноутвердительное. Например: “Все студенты нашей группы сдали экзамены. Следовательно, некоторые сдавшие экзамены – студенты нашей группы”. В исходном суждении “Все студенты нашей группы (S) сдали экзамены (Р)” предикат не распределен. Обращая суждение, необходимо опираться на правило вывода: термин, не распределенный в посылке, не может быть распределен и в заключении. Поэтому, становясь субъектом выводного суждения, предикат также не может быть распределен. Его объем ограничивается (“некоторые сдавшие экзамены”).
Схема обращения суждения A:
Все S есть Р.
Некоторые Р есть S.
Общеутвердительные выделяющие суждения (в которых предикат распределен) обращаются без ограничения по схеме:
Все S, и только S, есть Р.
Все Р есть S.
Общеотрицательное суждение обращается в общеотрицательное. Например: “Ни один студент нашей группы не является неуспевающим. Следовательно, ни один неуспевающий не является студентом нашей группы”.
Схема обращения суждения E:
Ни одно S не есть Р.
Ни одно Р не есть S.
Частноутвердительное суждение обращается в частноутвердительное. Например: “Некоторые студенты нашей группы - отличники. Следовательно, некоторые отличники - студенты нашей группы”.
Схема обращения суждения I:
Некоторые S есть Р.
Некоторые Р есть S.
Частноутвердительные выделяющие суждения (предикат распределен) обращается в общеутвердительное.
Эти суждения обращаются по схеме:
Некоторые S, и только S, есть Р.
Некоторые Р есть S.
Частноотрицательные суждения не обращаются.
3) Противопоставление предикату. Как было показано, в выводе, полученном посредством превращения, устанавливается отношение субъекта к понятию, противоречащему предикату исходного суждения (S к не-Р). С помощью обращения устанавливается отношение предиката к субъекту (Р к S). Для выяснения отношения понятия, противоречащего предикату, к субъекту исходного суждения (не-Р к S) используются умозаключения, полученные посредством противопоставления предикату. Субъектом суждения в этих умозаключениях является не предикат исходного суждения, как в обращении, а понятие, противоречащее предикату.
Преобразование суждения, в результате которого субъектом становится понятие, противоречащее предикату, а предикатом – субъект исходного суждения, называется противопоставлением предикату.
Нетрудно установить, что противопоставление предикату может рассматриваться как результат превращения и обращения: превращая исходное суждение S – Р, устанавливаем отношение S к не-Р; суждение, полученное путем превращения, обращается, в результате устанавливается отношение не-Р к S.
Заключение, полученное посредством противопоставления предикату, зависит от количества и качества исходного суждения.
Общеутвердительное суждение преобразуется в общеотрицательное. Например: “Все врачи имеют медицинское образование. Следовательно, ни один не имеющий медицинского образования не является врачом”.
Схема противопоставления предикату суждения A:
Все S есть Р.
Ни одно не-Р не есть S.
Общеотрицательное суждение преобразуется в частноутвердительное. Например: “Ни одно промышленное предприятие нашего города не является убыточным. Следовательно, некоторые неубыточные предприятия являются промышленными предприятиями нашего города”.
Схема противопоставления предикату суждения E:
Ни одно S не есть Р.
Некоторые не-Р есть S.
Частноутвердительные суждения посредством противопоставления предикату не преобразуются.
Частноотрицательные суждения посредством противопоставления предикату преобразуются в частноутвердительные. Например: “Некоторые свидетели не являются совершеннолетними. Следовательно, некоторые несовершеннолетние являются свидетелями”.
Схема противопоставления предикату суждения O:
Некоторые S не есть Р.
Некоторые не-Р есть S.
4) Умозаключение по логическому квадрату. Учитывая свойства отношений между категорическими суждениями A, E, I, O, которые иллюстрированы схемой логического квадрата, можно строить выводы, устанавливая следование истинности или ложности одного суждения из истинности или ложности другого суждения.
В “логическом квадрате” зафиксированы такие важнейшие отношения между суждениями, как логическое подчинение, противоположность (контрарность), субконтрарность, противоречие. Непосредственные умозаключения возможны здесь потому, что между суждениями, находящимися в этих отношениях, существуют определенные зависимости по истинности и ложности. Учитывая, что каждое суждение – А, Е, I, О – может находиться в трех отношениях с другими, из него можно сделать три вывода.
Например, если истинно общеутвердительное суждение (А) “Все благородные мысли находят себе сочувствие”, то отсюда следует: 1) что тем более истинно частноутвердительное суждение (I): “Некоторые благородные мысли находят себе сочувствие” (отношение подчинения); 2) что ложно общеотрицательное суждение (Е): “Ни одна благородная мысль не находит себе сочувствия” (отношение противоположности) и 3) что ложно частноотрицательное суждение (О): “Некоторые благородные мысли не находят себе сочувствия” (отношение противоречия).
Непосредственные умозаключения могут быть получены также из простых реляционных суждений. Логическим основанием здесь служит характер отношения R между предметами х и у. Так, если установлено, что “Женщины равны в правах с мужчинами”, то отсюда можно заключить, что “Мужчины равны в правах с женщинами”. Если известно, что “Конституционные законы выше остальных законов страны”, то отсюда следует, что “Остальные законы страны не выше (ниже) конституционных”.
Посылкой непосредственного умозаключения может быть не только простое атрибутивное или реляционное, но и сложное суждение.
Возьмем в качестве примера условное суждение (импликацию): “Если завтра будет солнечная погода, то мы пойдем в лес”. Из него можно сделать заключение: “Если мы не пошли в лес, то погода не была солнечной”.
Подобное умозаключение основано на законе контрапозиции. Он означает, что любое истинное условное суждение, если в нем поменять местами основание и следствие и подвергнуть их одновременно отрицанию, может дать в качестве заключения тоже истинное условное суждение.
Непосредственное умозаключение можно сделать и из конъюнкции. Если истинно, что “Казань находится на Волге, и Саратов находится на Волге”, то истинным будет и вывод “Саратов находится на Волге, и Казань находится на Волге”.
Заключение из нестрогой дизъюнкции: если истинно, что производительность труда зависит от технического прогресса или от квалификации работника”, то отсюда следует, что истинно и такое суждение: “Производительность труда зависит от квалификации работника или от технического прогресса”. В основе этих непосредст

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...