Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Глава 1. Влияние атмосферных загрязнений автомототранспортом на растения березы бородавчатой

 

Береза бородавчатая (Betula pendula) из семейства березовых (Betulaceae) образует частые насаждения и входит в состав смешанного леса. Береза является важнейшей лесообразующей породой, преобладающей в 60% лиственных и хвойно-лиственных лесов. Она прекрасно приспособлена к перенесению низких температур, не страдает от весенних заморозков [4]. Характерная особенность Б. бородавчатой – маленькие бугорки на молодых побегах. Продолжительность жизни от 40 до 120-150 лет.

Корневая система мощная, кора белая, гладкая. Листья очередные, с перистонервным жилкованием, с более или менее длинными черешками, с пильчатым или зубчатым краем. Цветет береза одновременно с распусканием листьев. Пыльца разносится ветром. После пыления мужские соцветия усыхают и отваливаются, женские развиваются, увеличиваются во много раз, видоизменяются и превращаются в соплодия.

В основу изучения взяты программа и методика сортоизучения плодовых и орехоплодных культур [10], методическое руководство ВИР им. Н.И. Вавилова [5], учебно-методическое пособие «Школьный экологический мониторинг» [14].

Наблюдения осуществлялись в трех точках: 1 – растения зеленой полосы вдоль улиц Энгельса и Мусохранова (опыт 1), 2 – на расстоянии 100 метров от дороги (опыт 2), 3 – в глубине парковой зоны отдыха - 900-1000 метров от дороги (контроль). Элементы учета: длина прироста основного и боковых побегов березы за вегетационный период, размер боковых и верхушечных почек, площадь листовой пластинки, длина и количество жилок в листе, длина черешка листа, длина женского соплодия, виды повреждений листа, качество пыльцевых зерен.

Возраст растений, используемых для наблюдения примерно одинаков, все пробы были взяты на одной высоте от поверхности земли. Измерение длины и ширины учетных объектов осуществлялось сантиметровой лентой, изучение площади листовой пластинки проводилось на аналогах листьев, переведенных на миллиметровую бумагу, что облегчило подсчет площади листа. Методика анализа качества пыльцы заключается в определении процента ненормальных (абортивных) пыльцевых зерен.

Взятие проб осуществлялось один раз в вегетационный период: май 2006, 2007 г.г. – пыльца; сентябрь 2005, 2007 г.г. – побеги березы бородавчатой. Повторность шестикратная.

При наблюдениях и измерениях проводилась статистическая обработка полученных результатов. Это позволило оценить точность и достоверность полученных результатов, избежать ошибочных выводов.

По литературным данным [3,9] в выбросах автомототранспорта преобладают свинец, сажа, оксид азота, оксид углерода, углеводороды, диоксид серы, иногда превышающие ПДК в несколько раз. Наибольшую опасность для растений представляет сернистый ангидрит (SO2), соединения фтора (HF, FSi4), хлористый водород (HCl), оксиды азота (NO, NO2), пылевые частицы, содержащие абсорбированные газы и оксиды различных металлов.

Выбросы автомототранспорта – это комплекс различных инградиентов. Суммарное действие этих веществ на растения иное, чем каждого газа в отдельности.

В первую очередь, отрицательное воздействие воздушного загрязнения сказывается на листьях растений. Листва задерживает городскую пыль, очищает воздух. Химическое действие пыли определяется составом, количеством и токсичность для данного растения. Физическое действие пыли проявляется, прежде всего, в образовании чехла, препятствующего нормальному тепло- и влагообмену листа с атмосферой и уменьшающего интенсивность доступного для растений света. Температура листа повышается на 8-10єС, соответственно увеличивается скорость транспирации. При сплошном покрытии листьев пылью испарение воды прекращается, и растения погибают. Иногда физиологические повреждения не сопровождаются внешними изменениями, но обычно признаки поражения растений токсикантами выражаются в некрозах края листа, побурении листьев, уродливых формах листа («смятые листья»), скручивании, «ожогах», а в тяжелейших случаях – засыхании и опадании листьев, отмирании растений [2].

Сильное повреждение листового аппарата не всегда приводит к гибели растения. Благодаря регенерационной способности растения восстанавливают новые листья и побеги взамен поврежденных.

В изученной нами литературе имеются данные о различной степени устойчивости растений к загрязнению окружающей среды [1, 9, 12, 13].

При озеленении улиц города необходимо учитывать способность растений концентрировать и накапливать из атмосферы вещества антропогенного происхождения, которые могут оказывать негативное воздействие, как на растение, так и на здоровье человека. Все растения способны очищать атмосферу, различия возникают только в эффективности процесса. По данным сотрудников ЦБС АН Белоруссии наибольшей емкостью поглощения (за вегетацию) обладают тополь бальзамический, тополь лентовидный, ива белая, а из хвойных пород – пихта одноцветная, ель колючая, ель голубая [2]. Высокая газопоглотительная способность у бирючины обыкновенной, тополя китайского, боярышника колючего (всего около 30 видов).

Для озеленения городов и населенных пунктов в Кемеровской области Центральным Сибирским ботаническим садом СО АН РФ г. Новосибирска рекомендован ассортимент местных и интродуцированных древесных и кустарниковых растений, включающий в себя 158 видов. Из них древесные растения составляют 47 видов, а кустарниковые – 111 видов (см. приложение).

В озеленении г. Ленинска-Кузнецкого повсеместно используется несколько пород. Это – тополь сибирский, клен ясенелистный, карагач, акация желтая, сирень обыкновенная. За последние годы в посадки стали вводить новые растения: березу бородавчатую, липу мелколистную, лиственницу сибирскую, рябину сибирскую, клен татарский, лох серебристый, сирень венгерскую и др.

При создании зеленого наряда г.Ленска-Кузнецкого необходимо учитывать морозо- и газоустойчивость деревьев и кустарников. По данным А.П. Баранник наибольшей морозоустойчивостью и газоустойчивостью обладают: ива белая, сибирские виды рябины, тополя, лиственницы, боярышник, кизильник черноплодный, береза бородавчатая, вяз гладкий, карагач, сирень обыкновенная, роза морщинистая, ясень зеленый и другие. Хвойные виды менее устойчивые к воздействию промышленных выбросов в озеленении используют реже.

В ассортименте растений, рекомендованных ЦСБС СО АН РФ г. Новосибирска, береза отнесена к растениям неустойчивым к действию воздушных загрязнителей (приложение 1).

Для защитных полос автомагистралей необходимо применять более долговечные виды растений, устойчивые к воздействию выхлопных газов автомобилей. Работа, выполненная мной, позволяет выявить влияние атмосферного загрязнения автомототранспортом на березу бородавчатую и определить возможности использования ее в озеленении улиц города Ленинска-Кузнецкого.

Загрязнение атмосферы приводит к различным нарушениям развития растений, вызывая сокращение сроков вегетации, уменьшение площади ассимилирующих органов, торможение процессов развития [9]. Осевшая на растениях пыль тормозит рост растений.

Наблюдения за состоянием побега осуществляли на живом растении, без отделения побега от основного растения. При измерении длины побега пользовались сантиметровой лентой. Из полученных измерений произвольно взяли каждое пятое измерение. Таким образом, n = 50. Затем провели статистическую обработку данных (приложение 2, табл.1).

При анализе полученных данных была установлена достоверность в различиях длины основного однолетнего побега в опыте и контроле. В условиях сильного атмосферного загрязнения происходит снижение величины прироста однолетнего побега березы бородавчатой за вегетационный период (диаграмма 1)

Диаграмма 1. Средняя величина однолетнего побега березы

 

Разница в длине побега в зоне сильного загрязнения составляет: основного – 31,4 %, бокового – 42,3 %. В сравнении с 2005 годом происходит снижение средней длины побега в среднем на 1 %. Это может быть связано с увеличением количества загрязняющих веществ в воздухе или с климатическими условиями вегетационного периода, (сравнительный анализ не производился). Изучая данные по встречаемости побегов различной длины, было отмечено, что в опыте чаще всего встречаются побеги с длиной 21-23 см, а у контрольных растений – 25-35 см. диаграмма 2)

 

Диаграмма 2 Длина побега, см.

 

В процессе приспособления к условиям загрязненной атмосферы у растений появляется мелкоклеточность, утолщение клеточных оболочек, уменьшение площади листовой пластинки, увеличение жилкования и количества устьиц [7].

Анализируя длину листовой пластинки у растений произрастающих в зоне загрязнения и условно чистом по воздушному загрязнению регионе, мной было обнаружено, что в опыте происходит значительное снижение величины признака (диаграмма 3).

 

Диаграмма 3. Средняя длина листовой пластинки, мм

 

При статистической обработке данных в 2005 году опыт был признан недостоверным, хотя полученное значение t = 1,93 очень близко к достоверному (t = 2). Это позволило предположить, что загрязнение воздуха оказывает влияния на рост листа в длину (приложение 2, табл.2), а недостоверность опыта вызвана неточностью измерений.

При изучении зависимости ширины листа от величины атмосферного загрязнения было установлено, что растения вдоль автотрассы имеют более узкие листья (диаграмма 4).

 

Диаграмма 4.Средняя ширина листа, мм


Статистическая обработка данных и определение достоверности полученных результатов говорит о высокой точности опыта (приложение 2, табл.3).

Полученные данные позволяют утверждать об отрицательном воздействии автомобильного транспорта на ширину листовой пластинки березы бородавчатой.

Анализируя длину черешка листовой пластинки у растений разных участков произрастания (опыт и контроль) я получила следующие результаты: у растений, произрастающих в придорожной зоне, происходит уменьшение длины черешка листа (диаграмма 5).

 

Диаграмма 5. Длина черешка листовой пластинки, мм

 

При сравнительной характеристике длины черешка листьев, произрастающих в разных условиях загрязнения воздуха, было отмечено, что у опытных растений чаще встречаются листья с черешком длиной 21-22 мм., а у контрольных растений с черешком длиной 25-30 мм. (диаграмма 6).


Диаграмма 6. Длина черешка листовой пластинки, мм

 

Достоверность опыта высокая, что позволяет говорить о прямой зависимости длины черешка от количества загрязняющих веществ в воздухе (приложение 2, табл. 4).

Изучение площади листовой пластинки проводилось на аналогах листьев, переведенных на миллиметровую бумагу, что позволило с большей точностью высчитать их поверхность.

Анализ полученных данных и статистическая обработка результатов позволили установить зависимость между площадью листа и экологическими условиями произрастания (приложение 2, табл. 5).

Сильная загазованность атмосферного воздуха вызывает резкое снижение площади листовой пластинки (диаграмма 7). Этот признак хорошо прослеживается, доступен для изучения, легко просчитывается, что позволяет использовать его как показатель загрязнения воздушной среды.

 

Диаграмма 7.Средняя площадь листовой пластинки, см2


При изучении количества жилок в листе, величины боковых и верхушечных почек не получено достоверных различий в результатах между данными опыта и контроля, что говорит о возможной устойчивости данных показателей к автомобильному загрязнению воздуха.

Действующая на растения двуокись азота вызывает периферическое повреждение листьев, скручивание их вовнутрь, появление коричневой окраски на завершающем этапе развития листьев. Присутствие в атмосфере NO2 задерживает рост и развитие овощных культур, снижают их урожайность и качество продукции [7, 9, 14].

Большую опасность для растений представляют фтористые соединения, оказывающие фитотоксическое действие в небольших концентрациях (менее 0,6 мкг/ м3). Фтор не является необходимым для развития растений элементом и не участвует в обмене веществ. Поэтому и не происходит его детоксикация в растительной клетке. Фтор накапливается в растениях, создавая опасность для здоровья животных и человека при употреблении растений на корм или в пищу [7,9]. Большая часть фтора в виде пыли, осевшей на поверхности растений, смывается осадками и не проникает внутрь растений.

Появление симптомов повреждений связано с перемещением фторидов, поглощенных из воздуха к верхушкам и краям листьев. В начале на листьях образуются хлоротические пятна, сопровождающиеся некрозами и иссушением тканей. Листья покрываются пятнами светло-коричневого и бурого цвета. Газообразные токсиканты начинают оказывать влияние на растение с момента контакта с покровными тканями. Важную роль в проявлении устойчивости растений играет устьичный аппарат листьев, как механизм, с участием которого происходит проникновение газов внутрь листа [6].

Сернистый газ, повреждая растения, способствует ослаблению их устойчивости к различным факторам среды, болезням, вредителям. Признаки повреждения растений сероводородом – потеря тургора, появление светло-желтых и буро-черных пятен, ожогов преимущественно в середине листовой пластинки. В основе патологических изменений лежит нарушение структуры цитоплазматических мембран, падение интенсивности фотосинтеза и дыхания листьев растений. Молодые листья сильнее поглощают сернистый газ и больше страдают. Наряду со снижением количества хлорофилла сернистый газ вызывает сдвиги в структуре мембран хлоропластов. Они становятся неправильной формы, происходит утоньшение их мембран. Под действием значительных концентраций вредных газов, особенно двуокиси серы и фтора, клетки мезофилла сплющиваются, сама клетка деформируется, разрушаются хлоропласты, и происходит падение интенсивности фотосинтеза [7, 9, 12].

Реакция растительного организма на газообразные токсиканты определяется химической природой токсиканта (реакционностью, концентрацией, продолжительностью взаимодействия с растением), а также индивидуальными особенностями растений (интенсивностью газообмена, способностью нейтрализовать токсикант и регенерировать частично нарушенные клеточные органеллы и функциональные системы) (7,9).

Под влиянием различных веществ, содержащихся в выхлопных газах, происходит видимое повреждение листьев. В процессе изучения поверхности листа было выявлено 5 типов повреждений: точечный и пятнистый некроз, мертвый край листа и мертвая верхушка, изменение формы листа. Распределение этих повреждений показано на диаграммах 8,9,10,11.

 

Диаграмма 8 Точечный некроз листьев березы, %

Диаграмма 9.Пятнистый некроз листьев березы, %

Количество некрозов листа в 2007 году возросло в среднем на 17,75 %, что говорит о повышении количества соединений серы в воздухе.

Диаграмма 10.Мертвый край листа, %

Диаграмма 11. Мертвая верхушка листа, %

 

На приведенных диаграммах видно, что с 2005 года произошло увеличение количества листьев березы с отмирающими, в процессе вегетации, краем и верхушкой листа. Рост составил в среднем 16,65 %. Можно предположить, что это вызвано возросшим количеством соединений азота и фтора в воздухе вдоль автомагистралей.

Наблюдая за изменением формы листа, было обнаружено увеличение деформированных листьев у растений вдоль дорог в сравнении с контрольными березами в парке (диаграмма 12).

 

Диаграмма 12. Изменения формы листовой пластинки, %

 

 

Известно, что деформация листа связана с действием этилена, содержащегося в выхлопных газах автомобиля. Небольшое уменьшение количества деформированных листьев в 2007 году можно объяснить погрешностью опыта.

По степени видимых повреждений листа можно установить интенсивность атмосферного загрязнения. Чем выше количество атмосферных токсикантов, тем больше степень различных повреждений вегетирующих органов. Разница между опытными и контрольными растениями составила 95, 34 %.

От уровня физического и химического загрязнения среды в большой степени зависит качество пыльцевых зерен. Пыльца отличается высокой чувствительностью к действию отрицательных факторов и может являться индикатором загрязнения среды генетически активными компонентами. У плодовых культур затормаживаются процессы созревания пыльцы, повреждаются рыльца пестиков в цветках, вследствие чего снижается плодоношение, ухудшается качество продукции растениеводства, снижается урожайность [9]. Генетически активные факторы среды нарушают процесс образования пыльцы, доводя до полного отсутствия в пыльниках нормальных пыльцевых зерен.

Загрязнение окружающей среды вызывают снижение количества нормальных пыльцевых зерен в цветках березы. Эта закономерность четко прослеживается при исследовании проб пыльцы, взятых у дороги и в глубине парковой зоны (диаграмма 13).

 

Диаграмма 13. Качество пыльцевых зерен, %

 

Количество нормальных пыльцевых зерен уменьшается в придорожной зоне на 39 %, одновременно возрастает количество абортивных пыльцевых зерен в пробах растений этой зоны на 46,6 %, что говорит о высоком фоне загрязнения среды.

Длина женского соплодия у березы позволяет, предположительно, выяснить количество образующихся семян, но такой зависимости я не изучала. Анализируя полученные данные о длине соплодия за два года наблюдений, можно утверждать о зависимости длины соплодия от экологических условий произрастания (диаграмма 14).

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...