Решение задачи на компьютере
ЛАБОРАТОРНАЯ РАБОТА №2 по мат.программированию «Графический и симплексный методы решения ОЗЛП»
Для изготовления 2-х различных изделий А и В используется 3 вида сырья. На производство единицы изделия А требуется затратить сырья 1-го вида а1 кг, сырья 2-го вида – а2 кг, сырья 3-го вида – а3 кг. На производство единицы изделия В требуется затратить сырья 1-го вида в1 кг, сырья 2-го вида – в2 кг, сырья 3-го вида – в3 кг. Производство обеспечено сырьём 1-го вида в количестве Р1 кг, сырьём 2-го вида в количестве Р2 кг, сырьём 3-го вида в количестве Р3 кг. Прибыль от реализации единицы готового изделия А составляет ден.ед., а изделия В – ден.ед.
Математическая модель задачи Обозначим количество произведенной продукции 1-го вида через х1, 2-го вида – х2. Тогда линейная функция примет вид: Z (х1, х2) =2*х1+4*х2. Это есть цена произведенной продукции. Наше решение должно обеспечить максимальное значение этой функции. Условие налагает на величины х1 и х2 ограничения следующего вида:
Построенная линейная функция называется функцией цели и совместно системой ограничений образует математическую модель рассматриваемой экономической задачи. Графическое решение задачи Построим многоугольник решений. Для этого в системе координат х1Ох2 на плоскости изобразим граничные прямые
Взяв какую-нибудь точку, например, начало координат, установим, какую полуплоскость определяет соответствующее неравенство. Многоугольником решений данной задачи является треугольник АОВ. Для построения прямой 2*х1+4*х2=0 строим радиус-вектор N =(2;4)=2.5*(2;4)=(5;10) и через точку 0 проводим прямую, перпендикулярную ему. Построенную прямую Z =0 перемещаем параллельно самой себе в направлении вектора N. Опорной по отношению к многоугольнику решений эта прямая становится в точке А (0;42,5), где функция Z принимает максимальное значение.
Оптимальный план задачи: х1=0; х2=42,5. Подставляя значения х1 и х2 в линейную функцию, получаем Zmax =2*0+4*42.5=170 у.е. Таким образом, для того чтобы получить максимальную прибыль в размере 170 у.е., необходимо запланировать производство 42,5 ед. продукции В. Решение задачи симплексным методом Запишем систему в векторной форме х1*А1+х2*А2+х3*А3+х4*А4+х5*А5=Ао, где
Составляем симплексную таблицу.
Среди полученных оценок имеются две отрицательные: Z1-C1=-2<0 и Z2-C2=-4<0. Это означает, что первоначальный опорный план не является оптимальным и его можно улучшить, включив в базис вектор, которому соответствует максимальное по модулю отрицательное число в m+1 строке. Разрешающий вектор-столбец А2. Разрешающий элемент находим по минимальному симплексному отношению. Разрешающий элемент – число 10. Составим вторую симплексную таблицу.
Просмотрев m+1 строку, убеждаемся, что опорный план – оптимален. Оптимальный план предусматривает изготовление 42,5 ед.изделия В и не предусматривает изготовление изделий А. Изготовление изделий А привело бы к уменьшению прибыли на 2,4 у.е. Сырье 1-го вида используется полностью. Неиспользованными остается 450-237,5=212,5 тонн 2-го вида и 550-295=255 тонн 3-го вида сырья. Максимальная прибыль составляет 170 у.е.
Решение задачи на компьютере Выполним следующие действия: – В ячейку А1 вводим формулу для целевой функции=2*х1+4*х2 – В ячейку А3 вводим формулу для ограничения: =11*с1+10*с2. – В ячейку А4 вводим формулу для ограничения: =7*с1+5*с2. – В ячейку А3 вводим формулу для ограничения: =8*с1+6*с2. – В ячейку С1:С2 вводим начальные значения переменных (0:0). –Выполним команду Сервис > Поиск решения.
Следовательно, план выпуска продукции, включающий изготовление 42,5 изделий В является оптимальным. При данном плане выпуска изделий полностью используется сырье 1-го вида и остаётся неиспользованным 450-237,5=212,5 тонн 2-го вида и 550-295=255 тонн 3-го вида сырья, а стоимость производимой продукции равна 170 у.е. ЛАБОРАТОРНАЯ РАБОТА №3 по мат.программированию «Транспортная задача»
Имеются 3 пункта поставки однородного груза А1, А2, А3 и 5 пунктов В1, В2, В3, В4, В5 потребления этого груза. На пунктах А1-А3 находится груз соответственно в количестве а1-а3 тонн. В пункты В1-В5 требуется доставить соответственно в1-в5 тонн груза. Стоимости перевозок 1 тонны груза между пунктами поставки и пунктами потребления приведены в матрице D. Найти такой план закрепления потребителей за поставщиками однородного груза, чтобы общие затраты по перевозкам были минимальными.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|