Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Генная терапия онкологических заболеваний.




ЛЕКЦИЯ №14

1.Генная инженерия в производстве вакцин.

 

Вакцинация способствует формированию у ре­ципиента иммунитета к патогенным микроорга­низмам и тем самым защищает его от инфекции. В ответ на пероральное или парентеральное вве­дение вакцины в организме хозяина вырабаты­ваются антитела к патогенному микроорганиз­му, которые при последующей инфекции приводят к его инактивации (нейтрализации или гибели), блокируют его пролиферацию и не позволяют развиться заболеванию.

Эффект вакцинации открыл более 200 лет на­зад - в 1796 г. - врач Эдуард Дженнер. Он дока­зал экспериментально, что человек, перенесший коровью оспу, не очень тяжелую болезнь крупно­го рогатого скота, становится невосприимчивым к оспе натуральной. Натуральная оспа - высоко­контагиозное заболевание с высокой смертно­стью; даже если больной не погибает, у него не­редко возникают различные уродства, психические расстройства и слепота. Дженнер публично провел прививку коровьей оспы 8-лет­нему мальчику Джеймсу Фиппсу, использовав дая этого экссудат из пустулы больной коровьей оспой, а затем через определенное время дважды инфицировал ребенка гноем из пустулы больно­го натуральной оспой. Все проявления заболева­ния ограничились покраснением в месте привив­ки, исчезнувшим через несколько дней. Вакцины такого типа получили название дженеровских. Однако такой путь вакцинации не получил большого развития. Это объясняется тем, что в природе не всегда возможно найти малопатогенный аналог болезнетворного микроорганизма, пригодный для приготовления вакцины.

Более перспективным оказался метод вакцинации предложенный Пастером. Пастеровские вакцины получают на основе убитых (инактивированных) патоген­ных микроорганизмов либо живых, но не виру­лентных (аттенуированных) штаммов. Для этого штамм дикого типа выращивают в культуре, очищают, а затем инактивируют (убивают) или ослабляют (аттенуируют) таким образом, чтобы он вызывал иммун­ный ответ, достаточно эффективный в отноше­нии нормального вирулентного штамма.

Для иммунопрофилактики некоторых болезней, таких, например, как столбняк или дифтерия, наличие самих бактерий в вакцине необязательно. Дело в том, что главной причиной этих заболеваний являются выделяемые этими бактериями патогенные токсины. Ученые обнаружили, что эти токсины инактивируются формалином и могут затем безопасно использоваться в вакцинах. При встрече иммунной системы с вакциной, содержащей безопасный анатоксин, она вырабатывает антитела для борьбы с настоящим токсином. Такие вакцины получили название анатоксины.

Ранее такие инфекционные болезни, как ту­беркулез, оспа, холера, брюшной тиф, бубонная чума и полиомиелит, были настоящим бичом для человечества. С появлением вакцин, анти­биотиков и внедрением мер профилактики эти эпидемические болезни удалось взять под конт­роль. К сожалению, против многих болезней человека и животных вакцин до сих пор не существует или они малоэффективны. Сегодня во всем мире бо­лее 2 млрд. людей страдают заболеваниями, ко­торые можно было бы предотвратить с помощью вакцинации. Вакцины могут оказаться полез­ными и для профилактики постоянно появляю­щихся «новых» болезней (например, СПИДа).

Несмотря на значительные успехи в создании вакцин против таких заболеваний, как краснуха, дифтерия, ко­клюш, столбняк и полиомиелит, произ­водство и использование классических ”пастеровских” вакцин сталкивается с це­лым рядом ограничений.

1. Не все патогенные микроорганизмы удается культивировать, поэтому для многих заболе­ваний вакцины не созданы.

2. Для получения вирусов животных и человека необходима дорого-стоящая культура живот­ных клеток.

3. Титр вирусов животных и человека в культу­ре и скорость их размноже-ния часто бывают очень низкими, что удорожает производство вакцин.

4. Необходимо строго соблюдать меры предос­торожности при производстве вакцин из высокопатогенных микроорганизмов, чтобы не допустить инфициро­вания персонала.

5. При нарушении производственного процесса в некоторые партии вакцины могут попасть живые или недостаточно ослабленные виру­лентные микроорганизмы, что может приве­сти к неумышленному распространению ин­фекции.

6. Аттенуированные штаммы могут ревертировать (восстанавливать свою вирулентность), поэтому необхо­димо постоянно контролировать их вирулент­ность.

7. Некоторые заболевания (например, СПИД) нельзя предупреждать с помощью традици­онных вакцин.

8. Большинство современных вакцин имеют ог­раниченный срок годности и сохраняют ак­тивность только при пониженной температу­ре, что затрудняет их использование в развивающихся странах.

В последнее десятилетие, с развитием техно­логии рекомбинантных ДНК, появилась воз­можность создать новое поколение вакцин, не обладающих недостатками традиционных вак­цин. Основные подходы к созданию вакцин нового типа на основе методов генной инженерии заключаются в следующем:

 

1. Модификация генома патогенного микроорганизма. Работы в этой области ведутся по двум основным направлениям:

А) Патогенный микроорганизм модифицируют, делетируя (удаляя) из его генома гены, ответственные за вирулент­ность (гены кодирующие синтез бактериальных токсинов). Способность вызывать иммунный ответ при этом сохраняется. Такой микроорганизм можно безбоязненно использовать в качестве живой вакцины, поскольку выращивание в чистой культуре исключает возможность спонтанного восстановления удаленного гена.

Примером такого подхода является разработанная недавно противохолерная вакцина на основе рекомбинантного штамма V.cholerae, у которого была удалена нуклеотидная последовательность, кодирующая синтез энтеротоксина, ответственного за патогенный эффект. Проводимые в настоящее время клинические испытания эффективности этой формы как противохолерной вакцины пока не дали однозначного результата. Вакцина обеспечивает почти 90%-ную защиту от холеры, но у некоторых испытуемых наблюдаются побочные эффекты, поэтому она нуждается в дальнейшей доработке.

Б) Другой способ получения непатогенных штам­мов, пригодных для создания на их основе живых вакцин, состоит в удалении из генома патоген­ных бактерий хромосомных областей, отвечаю­щих за некоторые независимые жизненно важные функции (метаболитические процессы), например синтез определенных азотистых оснований или витаминов. При этом лучше делетировать по крайней мере две такие области, поскольку вероятность их од­новременного восстановления очень мала. Пред­полагается, что штамм с двойной делецией будет обладать ограниченной пролиферативной спо­собностью (ограниченным сроком жизни в иммунизируемом организме) и сниженной патогенностью, но обес­печит выработку иммунного ответа. На подобном подходе в настоящее время созданы и проходят клинические испытания вакцины против сальмонеллеза и лейшманиоза.

2. Использование непатогенных микроорганизмов с встроенными в клеточную стенку специфическими имуногенными белками. С помощью методов генной инженерии создают живые непатогенные системы пере­носа отдельных антигенных участков (эпитопов) или целых имуногенных белков не­родственного патогенного организма. Один из подходов, используемых при создании таких вакцин, состоит в разме­щении белка - антигена патогенной бак­терии на поверхности живой непатогенной бак­терии, так как в этом случае он обладает более высокой иммуногенностью, чем когда он локализован в цитоплазме. Многие бактерии имеют жгутики, состоящие из белка флагеллина; под микроско­пом они выглядят как нити, отходящие от бак­териальной клетки. Если сделать так, что жгути­ки непатогенного микроорганизма будут нести специфический эпитоп (белковую молекулу) патогенного микроорга­низма, то можно будет индуцировать выработку защитных антител. Вакцина созданная на основе таких рекомбинантных непатогенных микроорганизмов будет способствовать развитию вы­раженного иммунного ответа на патогенный микроорганизм.

Именно такой подход использовали при соз­дании противохолерной и противостолбнячной вакцины.

3. Создание субъединичных (пептидных) вакцин. Если какие то патогенные микроорганизмы не растут в культуре, то на их основе не возможно создать классическую пастеровскую вакцину. Однако, можно выделить, клонировать и экспрессировать в альтернативном непатогенном хозяине (например, в Е. coli или линии клеток млеко­питающих) гены, отвечающие за выработку тех или иных антигенных белков, а затем выделить и использовать эти белки после очистки как «субъединич­ные» вакцины.

Субъединичные вакцины имеют свои достоинства и недостатки. Достоинства состоят в том, что препарат, содержащий только очищенный иммуногенный белок, стабилен и безопасен, его хими­ческие свойства известны, в нем отсутствуют дополнительные белки и нуклеиновые кислоты, которые могли бы вызывать нежелательные по­бочные эффекты в организме-хозяине. Недо­статки заключаются в том, что очистка специ­фического белка стоит дорого, а конформация выделенного белка может отличаться от той, ко­торую он имеет in situ (т.е. в составе вирусного капсида или оболочки), что может приводить к изменению его антигенных свойств. Решение о производстве субъединичной вакцины прини­мается с учетом всех имеющих отношение к де­лу биологических и экономических факторов. В настоящее время в разных стадиях разработки и клинических испытаний находятся вакцины против герпеса, ящура и туберкулеза.

4. Создание “векторных вакцин”. Эти вакцины принципиально отличаются от вакцин других типов тем, что имуногенные белки не вводятся в готовом виде в имунизируемый организм с компонентами вакцины (клетки микроорганизмов и продукты их разрушения), а синтезируются в непосредственно в нем, за счет экспрессии кодирующих их генов, которые в свою очередь переносятся в имунизируемый организм с помощью специальных векторов. Наиболее широко “векторные вакцины” создаются на основе вируса коровьей оспы (ВКО), а так же ряда других условно- или малопатогенных вирусов (аденовирус, полиовирус, вирус ветряной оспы). ВКО достаточно хорошо изучен, его геном полностью секвенирован. ДНК ВКО реплицируется в цитоплазме инфицированных клеток, а не в ядре, благодаря наличию у вируса генов ДНК-полимеразы, РНК-полимеразы и фер­ментов, осуществляющих кэпирование, мети­лирование и полиаденили-рование мРНК. Поэ­тому, если в геном ВКО встроить чужеродный ген, так чтобы он находился под контролем ВКО-промотора, то он будет экспрессиироваться независимо от регуляторных и ферментных систем хозяина.

ВКО имеет широкий спектр хозяев (позво­ночных и беспозвоночных), остается жизне­способным в течение многих лет после лиофилизации (испарения воды с помощью замораживания) и не обладает онкогенными свойствами, а потому весьма удобен для создания векторных вак­цин.

Векторные ВКО-вакцины позволяют провести иммунизацию сразу от нескольких заболева­ний. Для этого можно использовать рекомбинантный ВКО, который несет несколько генов, кодирующих разные антигены.

В зависимости от используемого ВКО-промотора чужеродный белок может синтезироваться в ранней или поздней фазе инфекционного цикла, при этом его количество определяется силой промотора. При встраивании в одну ДНК ВКО нескольких чужеродных генов каждый из них помещают под контроль отдельного ВКО-промотора, чтобы предотвратить гомологическую рекомбинацию между различными участками вирусной ДНК, которая может привести к утрате встроенных генов.

Живая рекомбинантная векторная вакцина имеет ряд преимуществ перед неживыми вирусными и субъединичными вакцинами:

1) образование и активность аутентичного антигена практически не отличается от такового при обычной инфекции;

2) вирус может реплицироваться в клетке-хозя­ине и увеличивать количество антигена, который активирует продукцию антител В-клетками (гуморальный иммунитет) и стимулирует выработку Т-клеток (клеточный иммунитет);

3) встраивание нескольких генов антигенных белков в геном ВКО еще больше уменьшает его вирулентность.

Недостаток живой рекомбинантной вирус­ной вакцины состоит в том, что при вакцинации лиц со сниженным иммунным статусом (напри­мер, больных СПИДом) у них может развиться тяжелая вирусная инфекция. Чтобы решить эту проблему, можно встроить в вирусный вектор ген, кодирующий человеческий интерлейкин-2, который стимулирует Т-клеточный ответ и ог­раничивает пролиферацию вируса.

Нежелательные побочные эффекты проли­ферации ВКО можно предупредить инактива­цией вируса после вакцинации. Для этого был создан чувствительный к интерферону вирус (ВКО дикого типа относительно устойчив к его действию), пролиферацию которого можно ре­гулировать в случае возникших при вакцинации осложнений.

Вектор на ос­нове живого аттенуированного полиовируса (его исследования только начинаются) привлекателен тем, что позволяет проводить пероральную вакци­нацию. Такие «слизистые» вакцины (вакцины, компоненты которых связываются с рецепторами, расположенными в легких или желудочно-кишеч­ном тракте) пригодны для профилактики самых разных заболеваний: холеры, брюшного тифа, гриппа, пневмонии, мононуклеоза, бешенства, СПИДа, болезни Лайма. Но до любых клиниче­ских испытаний любого на первый взгляд безо­бидного вируса как системы доставки и экспрес­сии соответствующего гена необходимо убедиться в том, что он действительно безопасен. Например, повсеместно используемый ВКО вызывает у лю­дей осложнения с частотой примерно 3,0-10-6. По­этому из генома рекомбинантного вируса, кото­рый предполагается использовать для вакцинации человека, желательно удалить последовательности, ответственные за вирулентность.

К вакцинам для животных предъявляются менее жесткие требования, поэтому первыми вакцинами, полученными с помощью техноло­гии рекомбинантных ДНК, были вакцины про­тив ящура, бешенства, дизентерии и диареи по­росят. Создаются и другие вакцины для животных, а в скором времени появятся и рекомбинантные вакцины, предназначенные для человека.

 

Еще одним перспективным направлением в создании вакцин нового поколения является использование специально созданных трансгенных растений. Если встроить в геном вирусов этих растений гены, кодирующие синтез имуногенных белков или отдельных антигенных эпитопов различных патогенных микроорганизмов, то растения начнут их экспрессировать. После употребления в пищу таких растений в слизистой желудка и кишечника человека будут вырабатываться соответствующие антитела (так называемые мукозальные антитела). В бананах, например, удалось экспрессировать антиген холерного вибриона, антигены вируса гепатита В, и такие вакцины уже проходят клинические испытания. Антигены декарбоксилазы глутаминовой кислоты экспрессируются в картофеле и оказывают в опытах на животных антидиабетическое действие. Предполагается, что такие "банановые вакцины" в недалеком будущем могут составить серьезную конкуренцию как традиционным, так и генноинженерным вакцинам.

 

 

Генная терапия онкологических заболеваний.

Несмотря на широкое применение хирургических методов лечения, лучевой и химотерапии, злокачественные новообразования по-прежнему остаются одной из основных причин смерти людей, поэтому задача разработки новых спосо­бов их лечения является весьма актуальной. Од­ним из таких перспективных способов является уничтожение пролиферирующих опухолевых клеток с помо­щью препарата ганцикловира [GCV; 9-(1,3-дигидрокси-2-пропоксиметил) гуанина], который, будучи сам неактивным (пролекарство), преходит в активную форму под действием тимидинкиназы вируса простого герпеса (HSVtk). Для этого предварительно проводят in vivo трансфекцию опухолевых клеток вирусом простого герпеса и через несколько дней вводят ганцикловир. Вирусная тимидинкиназа фосфорилирует ганцикловир с образовани­ем ганцикловир-монофосфата. Киназы клетки-хозяина (опухоли) не фосфорилируют ганцикловир, зато охотно присоединяют фосфатные группы к его монофосфату с образованием ганцикловир-трифосфата, который ингибирует ДНК-полимеразу и останавливает синтез ДНК, вызывая гибель пролиферирующих клеток. Кроме того, через межклеточные контакты ганцикловиртрифосфат может проникать в нетрансфицированные опухолевые клетки, приводя и к их гибели. Одна экспрессирующая ген HSVtk опухолевая клетка может уничтожить до 10 немодифицированных клеток. Это явление называется «эффек­том свидетеля», а ген, вызывающий при определенных усло­виях гибель собственной клетки, называют ге­ном «самоубийства

Эффективность системы GCV-HSVtk; дока­зана целым рядом доклини-ческих испытаний. Однако I фаза ее клинических испытаний, в ко­торых участвовали больные с терминальной ста­дией рака, не показала регресса опухоли. Воз­можно, ген HSV/tk; был трансдуцирован (введен) в слишком малое число опухолевых клеток и, не­смотря на «эффект свидетеля», не мог подавить рост опухоли. В настоящее время разрабатыва­ются новые подходы, которые смогут повысить частоту трансдукции и доставить ген HSV/tk в клетки по всему объему опухоли.

Для генной терапии рака разработаны также комбинированные подходы, использующие две разные системы генов. В одном из них сочета­ются GCV- HSVtk -терапия и генная иммуноте­рапия (рис.1). Одну часть опухолевых кле­ток трансдуцируют геном HSV tk, другую - клонированной кДНК (или геном) одного из цитокинов. Цитокины (интерлейкин-2, интерлейкин-12 и другие) играют роль сигнала, моби­лизующего клетки иммунной системы и стиму­лирующего иммунный ответ. Показано, что опухолевые белки, которые высвобождаются из клетки, уничтоженной в результате терапии с помощью гена «самоубийства», взаимодейству­ют с иммунными клетками, привлекаемыми к месту локализации опухоли цитокином, и запу­скают противоопухолевую иммунную реакцию. Кроме того, противоопухолевые антитела, по­ступая в кровоток и циркулируя по всему орга­низму, предотвращают появление метастазов.

 

Этот подход к генной терапии рака был про­верен экспериментально: в печень животных имплантировали клетки рака толстой кишки, раздельно трансдуцированные генами HSVtk одного из цитокинов. Введение ганцикловира останавливало рост опухоли в печени. Опухоль не возникала и при введении нетрансдуцированных опухолевых клеток в другие ткани тако­го животного. У контрольных животных в ана­логичных условиях происходило развитие опухолей во всех местах введения нетрансдуцированных клеток рака толстой кишки. Несмотря на столь многообещающие результаты, прежде чем приступать к клиническим испытаниям те­рапии с использованием гена «самоубийства» или различных комбинаций генной терапии, необходимо установить, какие опухоли будут поддаваться такому лечению и не вызовет ли оно побочных эффектов.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...