Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Действие облучения на униполярные транзисторы.

Обзор по теме

 

“Воздействие ионизирующего излучения на ИОУ. Схемотехнические способы повышения радиационной стойкости ИОУ при воздействии импульсного ионизирующего излучения ”

 

 

2006

СОДЕРЖАНИЕ

 

1.Основные радиационные эффекты в элементах интегральных микросхем.  1.1. Классификация радиационных эффектов. 1.2. Действие облучения на биполярные транзисторы 1.3. Действие облучения на униполярные транзисторы 1.4. Специфика эффектов в зависимости от конструктивно-технологических особенностей ИМС 3    
2. Радиационные эффекты в усилительных и дифференциальных каскадах    2.1. Усилительные каскады.    2.2. Дифференциальные каскады.              2.2.1. Моделирование эффектов в дифф-каскадах.              2.2.2. Влияние ИИ на шумовые характеристики. 5
3. Радиационные эффекты в ИОУ    3.1. Воздействие ИИ на параметры ИОУ.    3.2. Критериальные параметры.    3.3. Проектирование радиационно-стойких ИОУ.    3.4. Прогнозирование эффектов воздействия ИИИ на ИОУ.    3.5. Имитационные испытания.    3.6. Уменьшение ВПР электронной аппаратуры. 8
5. Список использованной литературы. 15

                                             

 

Основные радиационные эффекты в элементах аналоговых интегральных микросхем.

 

Классификация радиационных эффектов.

 

Воздействие ионизирующих излучений (ИИ) на какое-либо вещество сопровождается выделением энергии частицей ИИ. Дальнейшая релаксация полученной энергии и распределение её по объёму вещества происходят в форме различных радиационных эффектов. Принято выделять два вида основных эффектов: смещения (обусловленные смещением атомов из своего нормального положения) и ионизации (связаны с образованием свободных носителей заряда под действием ИИ).

 

Реакция интегральных микросхем (ИМС) на ионизирующее излучение обусловлена, в первую очередь, зависимостью параметров её элементов от эффектов смещения и ионизации. В свою очередь, конкретный вид энерговыделения (однородное, равновесное и т.п.) может приво­дить к появлению различных эффектов в микросхеме, особенно­сти проявления которых определяются специфическими для нее технологическими и схемотехническими решениями. По причине возникновения эти эффекты можно подразделить на первичные - обусловленные непосредственно энергией излучения, поглощен­ной в ИМС (дефекты смещения, модуляция проводимости и т.п.), и вторичные - обязанные своим происхождением инициирован­ному излучением перераспределению энергии внутренних и сто­ронних источников (радиационное защелкивание, вторичный фо­тотек, пробой и т.п.).

 

С точки зрения функционирования ИМС в аппаратуре в зависимости от соотношения между длительностью воздействия излучения Ти и временем релаксации вызванного им возбуждения в системе Трелразли­чают остаточные (долговременные Трел >> Ти) и переходные (кратковременные Тирел) изменения параметров приборов.

 

Ñ Одним из основных параметров, характеризующих переход­ные ионизационные эффекты в элементах ИМС при равновесном энерговыделении, является величина ионизационного тока р- n- переходов, который можно представить в виде двух составляю­щих: 1) мгновенная составляющая, связанная с дрейфом избыточных носителей из обедненной области перехода;

2)запаздывающая составляющая, связанная с диффузией и дрейфом неравновесных носителей заряда из областей, прилегающих к обедненной области р- n -перехода. Соотношение амплитуд запаздывающей и мгновенной со­ставляющих определяется параметрами р- n -перехода.

 

Ñ Долговременные изменения параметров транзисторов обу­словлены эффектами смещения и ионизации.

 Эффекты смеще­ния, связанные с изменением кристаллической структуры полу­проводника вследствие перемещения атомов из своего положе­ния, вызывают изменение электрофизических свойств полупро­водника: времени жизни, подвижности носителей заряда и их концентрации. Соответственно изменяются и параметры транзи­сторов, определяемые указанными величинами.

Эффекты ионизации, связанные с накоплением заряда в ди­электрических слоях и изменением плотности поверхностных состояний при ионизации полупроводника, также приводят к де­градации параметров транзисторов.

 

Действие облучения на транзисторы удобно установить на основании его физических параметров, характеризующих про­цессы в транзисторной структуре.

Действие облучения на биполярные транзисторы.

 

Физические параметры биполярного транзистора можно разбить на четыре группы:

1) Параметры, характеризующие диффузию и дрейф неосновных носителей,

2) Параметры, характери­зующие рекомбинацию и генерацию,

3) Параметры, определяющие изменение пространственного заряда в области p-n- переходов и его влияние на характеристики транзисторов (это зарядные емкости коллекторного и эмиттерного переходов, а также емкость изолирующих p-n-переходов)

4) Параметры, характеризующие падение напряжения в объеме полупроводника и включающие объемные сопротивления эмиттера, базы и коллектора, а при высоких уровнях инжекции также диффузионное падение напряжения (ЭДС Дембера).

Ионизирующие излучения влияют на все физические параметры транзи­стора, однако перечень параметров, подлежащих учету, зависит от конкретных условий применения.

 

 

Действие облучения на униполярные транзисторы.

 

Влияние ионизирующего излу­чения на параметры униполярных транзисторов как с управляющим p-n-переходом, так и МДП - структур в основном проявля­ется в виде изменений тока затвора I3, порогового напряжения Uзи.пор (для МДП - транзисторов с индуцированным каналом) или напряжения отсечки Uзи.отс(для транзисторов с управляющим р-п- переходом и со встроенным каналом) и крутизны характеристики транзистора Sст.Претерпевают изменение также дифференциаль­ные параметры: сопротивление затвора rз, внутреннее сопротив­ление транзистора ri.

В отличие от биполярных транзисторов в униполярных тран­зисторах ток в канале образуется потоком основных носителей, поэтому заметные изменения характеристик униполярных тран­зисторов, обусловленные действием эффектов смещения, наблю­даются при уровнях облучения, способных существенно повли­ять на подвижность основных носителей и их концентрацию. Для кремниевых ИМС при облучении нейтронами это происходит при флюенсах, превышающих 1015-1016 нейтр./см2. Вместе с тем приповерхностный характер происходящих в МДП-транзисторах процессов обусловливает их сильную чувствительность к иони­зационным эффектам, действие которых, прежде всего, свя­зано с накоплением положительного пространственного заряда в слое подзатворного диэлектрика, модулирующего проводимость канала МДП-транзистора.

 

Специфика эффектов в зависимости от конструктивно-технологических особенностей ИМС.

 

Специфика проявления радиаци­онных эффектов во многом определяется конструктивно-технологическими особенностями ИМС и в некоторых случаях различается для схем низкой и высо­кой степени интеграции. В частности, для интегральных структур малой и средней степени интеграции, к числу которых относятся аналоговые ИМС, можно пренебречь неравновесностью энерго­выделения, более слабо проявляются дозовые эффекты в бипо­лярных структурах и т.п.

 

Уменьшение размеров структур в условиях радиационного воздействия также приводит к принципиальным изменениям физики работы приборов. Эти изменения связаны с тем, что: 1) характерные пространственные масштабы изменения электрического поля сопоставимы с длинами релаксации энергии и импульса электронов и длиной свободного пробега электронов; 2) характерные размеры рабочих областей приборов сравнимы с расстоянием между кластерами радиационных дефектов (КРД); 3) характерные размеры рабочих областей приборов сопоставимы с размерами КРД; 4) ионизирующее излучение разогревает электронный газ, который не успевает остывать за времена пролета рабочей области приборов; 5) при облучении нейтронами происходит перестройка протонированных изолирующих областей ИС, что сказывается на процессах протекания тока и фоточувствительности; 6) взаимодействие ионизирующих излучений (особенно лазерных) с нанометровыми металлическими объектами имеет особенности; 7) радиационные технологические процессы (например, геттерирование) существенно изменяют электрофизические характеристики полупроводника, что заметным образом сказывается на процессах формирования радиационных дефектов в субмикронных приборах; 8) электроны, разогнанные до энергий 0,5...1 эВ большими электрическими полями (~ 100 кВ/см) в субмикронных приборах, могут проникать сквозь КРД, что принципиально меняет подход к моделированию радиационной стойкости приборов.

 

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...