Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Основные методы определения дисперсного состава пыли




Дисперсный состав пыли определяют на основе лабораторных исследований. Выбор метода определяется видом пыли, требуемой точностью, наличием соответствующего оборудования и др.

Применяют следующие основные методы определения дисперсного состава пыли:

ситовый анализ — разделение частиц на фракции путем последовательного просеивания навески пыли через лабораторные сита с отверстиями различных размеров;

седиментометрия — разделение навески пыли на фракции путем ее осаждения в жидкой или газообразной среде;

микроскопический анализ — рассмотрение пылевых частиц с помощью оптического или электронного микроскопа, определение формы частиц, их размера и количества по фракциям;

центробежная сепарация — разделение пыли на фракции с помощью центробежной силы в специальном аппарате.

Ситовый анализ применяют, как правило, для исследования грубой пыли, в которой масса частиц мельче 100 мкм составляет не более 10 %.

Пробу (навеску) пыли разделяют на фракции, последовательно просеивая ее через сита с отверстиями разного размера.

Под размером отверстий подразумевают длину стороны квадратной ячейки.

В нашей стране стандартизированы сита с отверстиями 40 мкм и более. При этом не представляется возможным определить дисперсный состав пыли в области мелких фракций, которые представляют наибольшую опасность. В мировой практике применяются сита с весьма малыми ячейками. Так, в Германии изготовляются сита с ячейками размером от 5 мкм.

Применяют ручной и механический просевы. Ручной просев обычно используют при исследовательской работе, а также для ответственных производственных анализов. Механический просев осуществляется с помощью специальных приборов (рис. 2.4.).

Рис. 2.4. Механический ситовый анализатор модели 029М: 1 — крышка; 2 — набор сит; 3 — столик; 4 — эксцентриковый вал; 5 — станина прибора; 6 — электродвигатель; 7 — кулиса; 8 — винты; 9 — рычаг

Продолжительность анализа значительно сокращается. Обычно выполняют два анализа ситовым методом. Отклонение их результатов по каждой фракции не должно отличаться более, чем на 2 %.

Кроме сухого просева, который наиболее распространен, применяют также мокрый — для исследования влажной пыли, а также в тех случаях, когда пыль склонна к образованию конгломератов и сухой просев затруднен.

Седиментометрический метод. Этот метод основан на том, что продолжительность осаждения пылевых частиц в жидкой среде зависит от их размеров, выраженных через эквивалентный диаметр. Зная ее, можно расчетным путем определить эквивалентный диаметр частиц. Последовательное взвешивание осадка позволяет определить процентное содержание этих частиц в пробе пыли.

Метод микроскопирования. Этот метод, кроме определения размеров пылевых частиц, их количества, позволяет изучить Строение пылевых частиц, сделать микрофотографии пыли.

Для рассмотрения под оптическим микроскопом приготовляют препараты по методу осветления. Запыленный фильтр из материала ФПП-15 подвергают воздействию паров растворителя, например, ацетона. Материал фильтра расплавляется, образуя прозрачную пленку, и фиксирует частицы пыли. Метод непригоден Для приготовления препарата пылей, взаимодействующих с растворителем.

Препарат приготовляют также следующим способом: предметное стекло запыляют, а затем накрывают покровным стеклом.

Пылевые частицы измеряют с помощью окулярной микрометрической линейки микроскопа (рис. 2.5.). Дисперсный состав пыли находят, измеряя частицы и определяя количество частиц каждой фракции. Метод микроскопии трудоемок; его применяют, в основном, при выполнении научных исследований. Для ряда видов пыли он является единственно возможным.

 

 

Рис. 2.5. Измерение величины с помощью окулярной микрометрической линейки: 1 — окулярная микрометрическая линейка; 2 — объектив-микрометр

 

Метод центробежной сепарации. Фракции отделяются последовательно от исследуемой навески под действием центробежной силы, которая в сотни раз больше силы тяжести, на использовании которой основан метод седиментометрии. Благодаря этому время выполнения анализа методом центробежной сепарации значительно сокращается.

Для анализа по данному методу применяют аппарат «Бако» (рис. 2.6.). В вихревое поле, которое имеет траекторию плоской

Рис. 2.6. Схема центробежного сепаратора «Бако»:

1 — верхняя часть ротора

2 — нижняя часть ротора;

3 — выпрямитель воздушного потока; 4 — кольцевая щель; 5 — коллектор; 6 — подкладка; 7 — пылесборник; 8 — пыль (крупная фракция); 9 —рукоятка тормоза; 10 — борт ротора; 11 — крыльчатка вентилятора; 12 — камера сепарации; 13 — питающая воронка; 14 — винт заслонки; 15 — исследуемая пыль; 16— винт вибропитателя; 17— вибропитательспирали, вводят исследуемую пыль. Под действием центробежной пыли происходит разделение пыли на две фракции, затем отделяют следующую фракцию и т. д. Таким образом происходит разделение навески на восемь фракций. Аппарат не может быть применен для анализа слипающихся и волокнистых пылей, так как они забивают камеру разделения прибора, что нарушает его работу.

Фотоэлектрический метод. Пригоден для экспресс-анализа, фотоэлектрический прибор типа АЗ-5 изготовляется в системе радиоэлектронной промышленности. Прибор позволяет определять счетную концентрацию аэрозольных частиц в пределах от 1 до 300 тыс частиц в 1 л воздуха, а также дисперсный состав частиц в пределах 0,4—10 мкм.

Действие АЗ-5 основано на том, каждая аэрозольная частица в оптическом датчике генерирует электрический импульс. Амплитуда импульса пропорциональна размеру частиц.

Канал непрерывного измерения прибора имеет диапазоны (количества частиц на 1 л воздуха): 0 —- 1000; 0 — 3000; 0 — 10000; О — 100000; 0 — 300000.

Погрешность прибора при определении счетной концентрации частиц не превышает ± 20 %.

Прибор работает от сети переменного тока напряжением 220 ± 10 В.или от источника постоянного тока напряжением 12 В. Масса прибора до 8,5 кг.

Дисперсный состав пыли представляют в виде таблицы или графика.

В таблице дается распределение пыли по фракциям в процентах от общей массы. Пример приведен в табл. 2.1.

 

Таблица 2.1.

Дисперсный состав пыли

Размер частиц на границах фракций, мкм <1,5 1,5-2,5 2,5-5 5-7,5 7,5-10 ID-15 15-25 25-35 35-50 >50
Фракции, % от общей Массы частиц 2,19 3,73 7,89 13,16 15,45 21,13 18,63 6,06 5,1 6,66

Результаты определения дисперсного состава могут быть представлены в виде таблицы, в которой приведены проценты массы или числа частиц, с размерами меньше или больше заданного. Пример — табл. 2.2.

Таблица 2.2.

Фракции пыли с частицами меньше или больше заданного размера

Размер частиц с/, мкм 1,5 2,5            
Масса частиц больше d, % 97,81 94,08 86,19 70,74 49,61 30,98 17,82 6,66
Масса частиц меньше d, % 2,19 5,92 13,81 29,26 50,39 69,02 82,18 93,34

Академик А. Н. Колмогоров теоретически обосновал, что дисперсность пыли, образующейся при измельчении материала в течение достаточно длительного времени, подчиняется логарифмически нормальному закону распределения. Данное положение неоднократно подтверждено экспериментально.

График дисперсного состава пыли обычно выполняют в вероятностно-логарифмической системе координат. На оси абсцисс откладывают логарифмы диаметров частиц, на оси ординат — массу данной пыли соответствующего размера в процентах. Распределение массы пыли по диаметрам частиц выражается прямой или близкой к ней линией.

ГОСТ 12.2.043-80 подразделяет все пыли в зависимости от дисперсности на пять групп: I — наиболее крупнодисперсная пыль; II — крупнодисперсная пыль; III — среднедисперсная пыль; IV — мелкодисперсная пыль; V — наиболее мелкодисперсная пыль. Номограмма для определения группы дисперсности пыли показана на рис. 2.7

 

Рис. 2.7. Номограмма для определения группы дисперсности пыли.

Обозначения, принятые на номограмме:

8 — размер частиц пыли, мкм; D — суммарная масса всех частиц ныли, имеющих размер менее данного S, % (от общей массы частиц пыли); 1—V—зоны, характеризующие группы дисперсности пыли

Если линия, характеризующая дисперсный состав

пыли, проходит по нескольким участкам номограммы, пыль относят к группе, более высокой по дисперсности.

Дисперсность пыли характеризует также медианный диаметр.

Медианным диаметром 850 называют такой размер частиц, по которому массу пыли можно разделить на две равные части: масса частиц мельче 850 составляет 50 % всей массы пыли, так же как и масса частиц крупнее 550.

 

Плотность частиц пыли

Плотность — масса единицы объема, кг/м3.

Различают истинную, кажущуюся и насыпную плотность частиц пыли.

Истинная плотность представляет собой массу единицы объема вещества, из которого образована пыль.

Кажущаяся плотность — это масса единицы объема частиц, включая объем закрытых пор. Кажущаяся плотность монолитной, частицы равна истинной плотности данной частицы.

Насыпная плотность — масса единицы объема уловленной пыли, свободно насыпанной в емкость. В объем, занимаемый пылью, входят внутренние поры частиц и промежуточное пространство между ними.

Кажущуюся плотность определяют пикнометрическим методом, который основан на определении объема жидкости, вытесненной пылевыми частицами, масса которых предварительно измерена. Поделив массу материала на вытесненный им объем, получаем плотность данного материала. Используют жидкость, которая не взаимодействует с исследуемой пылью.

Насыпную плотность определяют путем взвешивания измеренного объема пыли. Используют мерный цилиндр, лабораторные весы до 0,01 г, виброуплотнитель.

 

Удельная поверхность

Под удельной поверхностью пыли понимают отношение поверхности всех частиц к их массе или объему.

Значение удельной поверхности позволяет судить о дисперсности пыли. От удельной поверхности зависят многие свойства пыли и пылевидных материалов, например, прочность бетона, горение пылевидного топлива.

Определение удельной поверхности пыли основано на зависимости ее воздухопроницаемости от слоя пыли (пылевидного материала).

Для определения удельной поверхности пыли (пылевидного материала) при непостоянном количестве воздуха, протекающего через кювету с исследуемым материалом, применяют прибор ПСХ-2. При постоянном расходе воздуха применяют прибор Товарова.

Прибор ПСХ-2 обычно применяют при удельной поверхности до 5000 см2/г, прибор Товарова — при больших значениях.

2.2.5. Слипаемость пыли

Взаимодействие пылевых частиц между собой называется аутогезией. Аутогенным воздействием вызывается образование конгломератов пыли. Взаимодействие пылевых частиц с поверхностями называется адгезией.

Обычно, когда речь идет о взаимодействии пылевых частиц между собой, явления аутогезии именуют слипаемостью. Она обусловлена силами электрического, молекулярного и капиллярного происхождения. Устойчивая работа пылеулавливающего оборудования во многом зависит от слипаемости пыли.

В качестве показателя слипаемости принимают прочность пылевого слоя на разрыв, Па.

Слипаемость пыли определяют по методу разъемного цилиндра.

По степени слипаемости пыли могут быть разделены на четыре группы (табл. 2.3.).

Таблица 2.3.

Слипаемостъ пыли

Группа слипаемости Разрывная прочность слоя пыли, Р, Па Некоторые пыли данной группы
  Неслипающиеся, Р < 60 Доломитовая, глиноземная, шлаковая
II Слабослипающиеся, Р = 60—300 Коксовая, доменная, апатитовая
III Среднеслипающиеся, р = 300—600 Цементная, торфяная, металлическая, мучная, пыль с максимальным размером частиц 25 мкм
IV Сильнослипающиеся, Р>600 Цементная, гипсовая, волокнистые пыли (асбестовая, хлопковая, шерстяная); все пыли с частицами не более 10 мкм

 

Считают, что для влажной пыли степень ее слипаемости должна быть увеличена на один уровень. Слипаемость возрастает с уменьшением размера частиц.

Сыпучесть пыли

Сыпучесть характеризует подвижность частиц пыли относительно друг друга и их способность перемещаться под действием внешней силы. Сыпучесть зависит от размера частиц, их влажности и степени уплотнения.

Характеристики сыпучести используются при определении угла наклона стенок бункеров, течек и др. устройств, связанных с накоплением и перемещением пыли и пылевидных материалов.

Различают статический и динамический угол естественного откоса. Динамический угол естественного откоса относится к случаю, когда происходит падение частиц на плоскость.

Под статическим углом естественного откоса (его называют также углом обрушения) понимают угол, который образуется при обрушении слоя в результате удаления подпорной стенки.

Статический угол естественного откоса всегда больше динамического угла естественного откоса.

Динамический угол естественного откоса определяют на лабораторной установке, основными элементами которой являются бункер для исследуемой пыли, затвор бункера, диск, на который из бункера поступает пыль. Сформировавшийся конус пыли измеряют и вычисляют угол естественного откоса.

Для определения статического угла естественного откоса используют установку, основными частями которой являются камера и измерительный сосуд. После наполнения сосуда исследуемой пылью убирают съемную стенку сосуда. Часть материала в виде треугольной призмы сползает, образуя при этом откос. Статический угол естественного откоса (угол обрушения) определяют при помощи транспортира или вычисляют по замерам.

 

Гигроскопичность пыли

Гигроскопичностью пыли называется ее способность поглощать влагу из воздуха. Поглощение влаги оказывает влияние на такие свойства пыли, как электрическая проводимость, Слипаемость, сыпучесть и др.

Равновесие между относительной влажностью воздуха и влажностью материала выражает изотерма сорбции. Пользуясь изотермой сорбции, можно судить о поведении пыли в аппаратах, емкостях для пыли, пылепроводах. Пример изотерм сорбции приведен на рис. 2.8.

 

Рис. 2.8. Изотермы сорбции табачной пыли, отобранной на четырех табачных фабриках.

 

Содержание влаги в пыли выражает влагосодержание или влажность. Влагосодержание — отношение количества влаги в пыли к количеству абсолютно сухой пыли. Влажность — отношение количества влаги в пыли ко всему количеству пыли.

Гигроскопическая влага пыли, т. е. влага, которая удерживается на ее поверхности, в порах и капиллярах, может быть определена при высушивании пробы пыли до постоянной массы в сушильном шкафу.

Равновесную влажность пыли (изотерму сорбции) определяют, выдерживая ее до постоянной массы в воздушной среде с известной относительной влажностью. Несколько навесок исследуемой пыли высушивают до постоянной массы, а затем помещают в эксикаторы, в которых, благодаря наличию серной кислоты различной концентрации, поддерживается различная относительная влажность воздуха. Пыль выдерживается в эксикаторах несколько суток, пока масса пыли не стонет постоянной. Затем определяют равновесную влажность пыли и строят график зависимости равновесной влажности пыли от относительной влажности воздуха (изотерму сорбции) (рис. 2.8).

Смачиваемость пыли

На смачивании пыли распыленной водой основано мокрое пылеулавливание. Смачиваемость пыли определяет возможность ее гидроудаления, применение мокрой пылеуборки.производственных помещений.

Смачиваемость пыли определяют методом пленочной флотации. Он заключается в том, что в сосуд с дистиллированной водой высыпают навеску пыли. Определяют количество осевшей (затонувшей) пыли.

О смачиваемости пыли судят по доле затонувших частиц.

 

Абразивность пыли

Абразивность — способность пыли вызывать истирание стенок конструкций и аппаратов, с которыми соприкасается пылегазовый поток. Она зависит от твердости и плотности вещества, из которого образовалась пыль, размера частиц, их формы, скорости потока. При значительной абразивности пыли воздуховоды, газоходы, стенки пылеулавливающих аппаратов выходят из строя в весьма короткий срок. Абразивность пыли нужно учитывать при выборе материала и толщины стенок каналов для перемещения пылегазовых потоков и аппаратов для очистки этих потоков, а также при необходимости ограничивать скорость движения потоков. В ряде случаев применяют специальные облицовочные защитные материалы.

Считают, что износ металлических элементов вследствие абразивности пыли возрастает по мере увеличения размера частиц вплоть до 90 мкм, а затем по мере дальнейшего увеличения размера он уменьшается.

Абразивность пыли определяют на специальном приборе. Во вращающейся трубке прибора частицы исследуемой пыли, разгоняясь под действием центробежных сил, истирают поверхность стандартного образца. В результате происходит массовый износ, т. е. потеря массы образца. На основании исследований определяют коэффициент абразивности пыли по формуле

 

где AG — потеря массы образца, кг; В — постоянная прибора.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...