Требования стандарта ЕВРО к концентрации вредных веществ в ОГ
⇐ ПредыдущаяСтр 4 из 4
Углеводороды вызывают головокружение, расстройства дыхания и сердечной деятельности. Окись углерода поражает центральную нервную систему, вызывает потерю сознания и может привести к смертельному исходу. Окислы азота провоцируют удущье, отек легких. Сажа, твердые частицы способствуют зарождению опухолей. Для обеспечения экологической чистоты двигателей внутреннего сгорания целесообразно выполнять комплексные решения. С этой целью, например, необходимо повышать давления впрыска топлива в дизелях, использовать присадки, применять малотоксичные регулировки топливной аппаратуры (адресная регулировка форсунок совместно с насосом высокого давления), внедрять микропроцессорное управление процессом подачи топлива, смесеобразования и сгорания. Уменьшение выбросов вредных веществ с отработавшими газами может быть достигнуто внедрением регулярного контроля токсичности, использованием малотоксичных и экономичных регулировок, установкой нейтрализаторов в выпускную систему двигателя. По принципу действия нейтрализаторы бывают с пламенным дожиганием вредных веществ, каталитическими, жидкостными и фильтрующими.
МОТОРНЫЕ ТОПЛИВА Бензины При сгорании топлива образуются СО2 и Н2О. При сгорании серы и сернистых соединений выделяются серный и сернистый ангидриды (SO2 и SO3). Пары воды, соединяясь, с ангидридами, образуют сернистую и серную кислоты H2SO3 и H2SO4. Данные кислоты вызывают коррозию баков, трубопроводов и деталей двигателя.
Активность сернистых соединений проверяют с помощью медной пластинки. В пробирку наливают бензин, опускают медную пластинку и кипятят 18 мин при температуре 100 0С. Если на пластине отсутствуют тёмные пятна, то сера в топливе находится в допустимых пределах. При сгорании топлива его химическая энергия переходит в тепловую и далее в механическую. При нормальном сгорании средняя скорость распространения пламени доходит до 50 м/с. При детонации скорость сгорания увеличивается до 2500 м/с. При детонации слышны звонкие металлические стуки (ударные волны), мощность двигателя снижается, резко повышается температура, увеличиваются нагрузки на детали кривошипно-шатунного механизма. Октановое число бензинов проверяют моторным и исследовательским способами. Установка представляет собой одноцилиндровый двигатель (УИТ - 65) с переменной степенью сжатия (4 – 12). При моторном методе частота вращения коленчатого вала n = 900 мин-1 и угол опережения зажигания φ = 13 0. Исследовательский: n = 600 мин-1; φ = 20 0. Установка оборудована электронным прибором для измерения интенсивности детонации. Моторный способ имитирует работу двигателя грузовых автомобилей, на форсированных режимах и длительных нагрузках (междугородное движение транспорта). Исследовательский способ имитирует работу двигателя легкового автомобиля при меньших нагрузках (внутригородское движение). В качестве эталонных топлив берут изооктан С8Н18 (ОЧ = 100) и гептан С7Н16 (ОЧ =0). Октановое число определяется сравнительным методом при помощи эталонной смеси, состоящей из октана и гептана. Например, бензин, которому присвоили марку А-76, расшифровывается так: А – автомобильный, октановое число 76, определено моторным методом. Если взять смесь из 76 % изооктана и 24 % гептана, то она по детонационной стойкости будет такой же, как бензин марки А-76.
Октановое число есть показатель детонационной стойкости топлива, численно равный процентному содержанию изооктана в той его смеси с гептаном, которая по интенсивности детонации эквивалентна испыуемому топливу. Рассмотрим более подробно методику определения ОЧ по моторному методу. 1. Одноцилиндровый бензиновый двигатель работает на бензине, ОЧ которого неизвестно. Частота вращения вала двигателя 900 мин-1. Угол опережения зажигания 20 градусов. 2. Повышая степень сжатия (уменьшая объем камеры сгорания), добиваются устойчивой детонации. 3. Отключают анализируемый бензин и переводят работу двигателя на изооктан. Затем, добавляя гептан, создают условия сгорания с устойчивой детонацией. По показанию расходомеров определяют количество изооктана и гептана в эталонной смеси (например, 76 и 24 %). Октановое число бензина 76. При исследовательском методе двигатель работает с меньшей частотой вращения вала двигателя (600 мин-1). На данном режиме увеличивается время на протекание процесса сгорания и образования перекисей (очагов самовоспламенения). При наличии очагов самовоспламенения нужно меньше гептана – ускорителя детонации. По этой причине ОЧ по исследовательскому методу будет больше ОЧ по моторному методу. В соответствии с ГОСТ 2084 - 77 вырабатывались 3 марки бензинов: А-76, Аи-93, Аи-98. Показатели данных бензинов приведены в табл. 4.1. Индукционный период должен быть не менее 360 мин. Это время испытания образца (100 см3) в обьеме кислорода при давлении 0,7 МПа, температуре 100 0С до начала активного поглощения кислорода. Окисление начинается при снижении давления, контролируемого по манометру. Бензины, полученные прямой перегонкой, практически не содержат ненасыщенных углеводородов, имеют высокую химическую стабильность (большой индукционный период) и возможность длительного хранения. Бензины, полученные при помощи крекинг-процесса, имеют до 50 % ненасыщенных углеводородов, малый индукционный период и срок хранения. Разность между ОЧИ и ОЧМ называется чувствительностью бензина. Эта разность достигает 10 единиц. Чем выше данная разность, тем лучше сгорает бензин на неустановившихся режимах. По новому ГОСТ Р51105-97 выпускаются 4 марки неэтилированных бензинов, показатели которых приведены в табл. 4.2. Из табл. 4.2 следует, что к бензинам повышены требования по снижению концентрации свинца и содержанию серы.
Признак детонации – чёрный дым. Его причиной является заброс несгоревшего топлива в зону горения, где нет кислорода. При детонации ударная волна отражается от стенок цилиндра с частотой 2000 – 3000 Гц, при этом возникают металлические стуки. Давление в цилиндре резко изменяется. Мощность двигателя падает, температура в цилиндре возрастает. Для устранения детонации зажигание устанавливают позже. В современных автомобилях это выполняется автоматически. Таблица 4.1 Характеристики бензинов
Таблица 4.2 Характеристики бензинов
Кроме детонационного сгорания возможно и калильное зажигание. Под калильным зажиганием понимают воспламенение рабочей смеси от раскаленного тела, например электрода свечи, клапана. Калильное зажигание возможно даже после выключения зажигания (двигатель продолжает работать). Причиной данного нарушения могут быть нагретые поверхности клапана или свечи. Например, свеча А-17ДВ, установленная вместо требуемой А-20ДВ, может вызвать калильное зажигание. Свеча А-20ДВ более «холодная», лучше отводит теплоту и её установка устранит калильное зажигание.
Определение давления насыщенных паров Давление насыщенных паров – это максимальная концентрация паров
Рис. 4.1. Схема прибора: 1 – топливная камера; 2 – воздушная камера; 3 – водяная баня; 4 – термостат; 5 – пружинный зажим; 6 – манометр; 7 – шланги; 8 – термостат; 9 – схема заполнения топливной камеры
топлива в воздухе, при которой устанавливается равновесие между паром и жидкостью. Прибор для определения давления насыщенных паров топлива (рис.4.1) состоит из топливной 1 и воздушной 2 металлических камер цилиндрической формы, соединенных между собой резьбой. Воздушная камера, предназначенная для паровой фазы, соединена при помощи резиновой трубки и пружинного зажима (крана) 5 с манометром 6. При проведении опытов прибор помещается в водяную баню 5, соединенную двумя шлангами 7 с термостатом 8. Заданная температура воды поддерживается термостатом и контролируется по ртутному термометру 4, погруженному в баню до отметки 37 оС, с пределами измерений от 0 до 50 оС и ценой деления шкалы 0,1 градуса. На позиции 9 показана схема заполнения топливной камеры. Так как давление насыщенных паров зависит от температуры и состояния жидкой и паровой фаз, ГОСТ 1756 - 52 предусматривает определение этой величины при температуре 38 0С и соотношение фаз 1:4 (жидкость – газ). Перед началом опыта сосуд рассоединяют, шланг должен быть зажат зажимом. В топливную часть заливают бензин и охлаждают до 0 0С. Плотно соединяют топливную камеру с воздушной. Собранный сосуд поворачивают и сильно встряхивают несколько раз. Приводят сосуд в нормальное положение, опускают его в баню с t =38 0С. После погружения сосуда в баню открывают зажим и через 5 мин определяют давление по показанию манометра. Указания выше опрерации повторяют до тех пор, пока значение давления по манометру не стабилизируется. При стабилизации давления достигается термодинамическое равновесие, когда жидкость (бензин) уже не испаряется, а газ (пар) не конденсируется. Стабилизированное давление и есть давление насыщенных паров. Испаряемость бензина – это главное его качество, характеризующее скорость перехода жидкой фазы в газообразную. Для оценки испаряемости выполняют фракционную (фракция - часть) разгонку и определяют температуру, при которой испаряются 10, 50 и 90 % топлива по объему (t10 %, t50 %, t90 %.)
По величине температуры, при которой испаряется 10 % топлива (t10 %), определяют пусковые качества топлива и двигателя. При пуске двигателя в первую очередь воспламеняются от искры легкие фракции. По температуре выкипания 10 % топлива можно определить минимальную температуру воздуха, при которой возможен пуск двигателя.
tB = 0,5 t 10 % – 50,5. (4.1)
Моторное масло должно иметь индекс вязкости (не менее 100), при котором обеспечивается легкое проворачивание коленчатого вала от стартера. Если температура воздуха не ниже – 25 0С, то возможно применение всесезонного моторного масла МЗ3/10Г1 (SAE 5W/30, API SL). По значению температуры, при которой испаряется 50 % топлива (t50%), определяют качество протекания рабочего процесса двигателя, а также время его прогрева, динамику разгона автомобиля. По величине температуры t90 % оценивают количество тяжелых углеводородов. В случае их неполного сгорания они способствуют образованию нагара и разжижению моторного масла. Чем меньше значения t10 %, t50 %,t90 %, тем лучше пусковые качества и экономичней работает двигатель при минимальной токсичности отработавших газов. По ГОСТ Р 51105 – 97 испаряемость бензина характеризуются пятью классами (табл. 4.3). При малом давлении насыщенных паров, например 80 кПа (0,8 атм), бензин хорошо испаряется, что способствует более качественному протеканию процесса сгорания. C другой стороны, в топливопроводах могут возникнуть паровые пробки, что приведет к перебоям при подаче топлива из бака в камеру сгорания (двигатели с карбюратором). Рекомендации к применению бензинов по классам: 1, 2 – южные районы (лето); 3 – центральные районы; 4 – Север; 5 – Крайний Север.
Таблица 4.3 Испаряемость бензинов
Дизельные топлива
В процессе разгонки нефти бензиновые фракции выкипают при температуре до 200 0С, лигроиновые – до 230 0С, керосиновые – до 290 0С, газойлевые – до 340 0С, соляровые – до 370 0С. Из керосиновых, газойлевых и соляровых фракций (путем их смешания) получают дизельные топлива. Широкое применение получили летние (Л), зимние (З) и арктические (А) топлива. Главной их отличительной способностью является температура застывания. Так, например, летнее топливо нельзя применять зимой, так как оно может помутнеть при нулевой температуре и потерять подвижность при – 5 0С. При застывании топлива в системе топливоподачи оно теряет подвижность и двигатель прекращает работу. В составе летнего топлива больше парафиновых углеводородов. В маркировке дизельных топлив указывают его вид, допустимое содержание серы в процентах, температура вспышки для летнего и замерзания для зимнего (Л-0,2-50; З-0,2 минус 35; А-0,4) Если нет зимнего топлива, то летнее можно разбавить керосином, снижая температуру замерзания. Добавка 10 % керосина снижает температуру замерзания на – 5 0С. У дизельных топлив пусковые качества оцениваются при t50 % перегонки (250 – 280 0С); наличие тяжёлых фракций (смол) характеризуется t98% испарившегося топлива (330 – 360 0С).
Основные требования к дизельным топливам Топливо должно обеспечивать необходимую самовоспламеняемость (tСВ = 250 – 300 0). Способность самовоспламеняться оценивается цетановым числом (ЦЧ). Цетан (С16Н34) – это углеводород с хорошим воспламенением, ЦЧ=100, α - метилнафталин (С11Н10) – с плохой воспламеняемостью, ЦЧ = 0. Цетановое число определяется на специальной одноцилиндровой установке: частота вращения вала двигателя n = 900 мин – 1; угол опережения впрыска топлива φ = 130. Топливо подаётся в камеру сгорания при помощи топливного насоса высокого давления и форсунки. Под действием высокого давления топливо распыливается форсункой и подается в предкамеру, в которой при помощи подвижного поршня может изменяться обьем и соответственно степень сжатия. Процесс смесеобразования включает в себя распыливание топлива, его смешение с воздухом, нагрев, испарение, окисление и самовоспламенение. Время от момента подачи топлива до его воспламенения – период задержки воспламенения, который зависит от цетанового числа, температуры и давления. Принцип работы двигателя с воспламенением от сжатия был предложен в 1896 г. немецким инженером Рудольфом Дизелем. Распыленное топливо подаётся в камеру сгорания, в которой за счет сжатия температура воздуха достигает t = 500 – 600 0С, где оно самовоспламеняется и сгорает.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|