Основные эквивалентности
⇐ ПредыдущаяСтр 26 из 26 В символической логике доказано, что одни логические союзы могут заменяться на другие и при этом не нарушится смысл высказывания. Выражение, содержащее, скажем, союз "или", можно при желании переформулировать в такое, в котором вместо него будет стоять любой другой союз, и если исходное выражение было истинным, то и полученное в результате преобразования тоже останется истинным. Мы остановимся лишь на самых распространенных видах сложных высказываний - конъюнкции, дизъюнкции и импликации. Они являются также наиболее употребительными и в обычном языке. Доказательство формул для преобразования одних видов суждений в другие мы опускаем.
Конъюнкция: (A /\ B) = -(-A \/ -B) (2); (A /\ B) = -(A => -B) (3).
Дизъюнкция: (A \/ B) = -(-A /\ -B) (4); (A \/ B) = (-A => B) (5).
Импликация: (A => B) = -(A /\ -B) (6); (A => B) = (-A \/ B) (7).
Допустим, у нас имеется сложное конъюнктивное высказывание: "Казак - это пахарь и воин". Разбив его на два конъюнкта (p - "Казак есть воин", q - "Казак есть пахарь"), получим формулу для символической записи этого высказывания (p /\ q) и, воспользовавшись приведенными законами преобразования (2) и (3), мы легко получим два высказывания равносильных исходному, но выраженных иначе, - с дизъюнкцией: "Неверно, что казак это или не пахарь, или не воин" (p /\ q) = -(-p \/ -q), или импликацией: "Неверно, что если казак пахарь, то он не воин" (p /\ q) = -(p => -q). Вместо каждой переменной может быть подставлено также и сложное высказывание. Причем в принципе могут получаться как употребляемые в естественных языках преобразования мысли, так и неупотребительные (хотя все равно формально правильные). Так, известная фраза из старой кинокомедии "Я не трус, но я боюсь" запишется формулой, содержащей отрицание одной из переменных: (-p /\ q), где p означает "Я трус", а q - "Я боюсь". Ее преобразование в дизъюнктивное выражение по формуле (2) означает, что левая переменная должна получить отрицание (а поскольку одно уже было до этого, то их теперь над левой переменной станет два), правая переменная тоже получает отрицанием, появляется также отрицание над всем выражением, и, кроме того, знак конъюнкции заменяется на дизъюнктивный:
(-p /\ q) = -(-(-p) \/ q) Поскольку два отрицания нейтрализуют друг друга, то формула может быть упрощена до такой: (-p /\ q) = -(p \/ (-q) Наконец, замена переменных на повествовательные предложения даст нам высказывание, эквивалентное первоначальному, хотя и выраженному иначе: "Неверно утверждать: или я - трус, или я не боюсь". Следовательно, слова того комедийного героя равнозначны отрицанию самоочевидной и общепринятой альтернативы: или надо считаться трусом, или надо не бояться. Теперь преобразуем то же выражение в импликативное в соответствии с (3): (-p /\ q) = -(-p => -q). Получается, что взятые нами слова можно передать также и равносильным им импликативным выражением: "Неверно, что если я не трус, то я не боюсь". Можно также попробовать преобразовать известное латинское изречение: "О мертвых - или ничего, или хорошо". Сначала напишем формулу для него: (-p \/ q), где p означает "О мертвых что-нибудь говорить", q - "О мертвых говорить хорошо". Преобразование формулы в соответствии с законом (5) пройдет в два этапа: (-p \/ q) = (-(-p) => q)), (-p \/ q) = (p => q). В обновленной формулировке это же изречение получится таким: "Если о мертвых что-нибудь говорить, то хорошо". Стоит, пожалуй, обратить внимание на то, что при перестановке местами дизъюнктов соответствующее импликативное высказывание звучит иначе: "Если о мертвых не говорить хорошо, то, значит, не говорить (о них вообще)" - формально и это правильно, хотя выглядит искусственной конструкцией. Возможно, конечно, преобразование этого же изречения и в конъюнкцию по формуле (4):
(-p \/ q) = -(-(-p) /\ (-q)), (-p \/ q) = -(p /\ (-q)), "Неверно (неправильно) говорить что-либо о мертвых и при этом не говорить хорошо". Для преобразования выражений с тремя переменными возьмем такое сложное высказывание: "Преступление раскрыто, но неверно, что его раскрыли Петров или Сидоров" -(p /\ (q \/ r)), где p - "Преступление раскрыто", q - "Преступление раскрыл Петров", r - "Преступление раскрыл Сидоров". Преобразуем его в такое, которое содержит вместо конъюнкции импликацию, для чего нам понадобится воспользоваться законом (3), а скобку (q \/ r) мы будем рассматривать как одну переменную.
Преобразованное выражение содержит те же переменные, но вместо конъюнкции у него импликация. В новой редакции оно будет звучать уже иначе, чем раньше, хотя и останется тем же самым по смыслу: "Неверно утверждать: если преступление раскрыто, то сделано это Петровым или Сидоровым". С помощью указанных законов и выражающих их формул можно решать и обратную задачу - проверять равносильность высказываний, когда они составлены из одинаковых простых суждений. Попробуем, например, сопоставить известную (странную) поговорку "Любопытство - не порок, но большое свинство" (1) с таким утверждением: "Неверно, что если любопытство - не порок, то тогда оно не есть свинство" (2). Можно ли считать их одной и той же мыслью, только по-разному высказанной или же они не совпадают? Для ответа надо записать оба высказывания символами: 1) Любопытство - не порок, но большое свинство (-p /\ q) (1) 2) Неверно, что если любопытство - не порок, то тогда оно не есть свинство -(-p => -q) (2) где p означает "Любопытство - порок", а q - "Любопытство есть свинство". Теперь осталось только преобразовать либо конъюнкцию в импликацию, либо, наоборот, импликацию в конъюнкцию и посмотреть, получается ли из одной формулы другая или нет. В данном случае проще конъюнкцию превратить в импликацию по формуле (3). В результате сразу же получим: (-p /\ q) = -(-p => -q). Полученная в результате выведения формула в точности идентична выражению (2), через которую записано высказывание 2) "Неверно, что если любопытство - не порок, то тогда оно не есть свинство". Значит, одно получается из другого в результате преобразования и они, стало быть, эквивалентны. Можно провести проверку и путем преобразования второго выражения в конъюнкцию:
Разумеется, результат получается тот же самый: преобразование второго выражения дает выражение (1), и это снова позволяет утверждать, что оба высказывания эквивалентны. На практике нет необходимости проделывать оба преобразования, так как они оба всегда приводят к одному и тому же итогу. Достаточно одной проверки, выбрав ту из них, которая представляется проще. В нашем случае эта первое преобразование. Можно проверять эквивалентность и более сложных выражений. Возьмем для примера два таких высказывания с тремя переменными:
1) "Если переходишь улицу, то сначала оглянись направо и налево" 2) "Или не переходи улицу, или неверно, что надо оглянуться направо и налево"
(p => (q /\ r)) (1); (-p \/ (-(q /\ r)) (2). Для проверки их эквивалентности надо либо (1) преобразовать в дизъюнктивное выражение по формуле (6), либо, наоборот, преобразовать (2) в импликативное выражение, воспользовавшись формулой (5), и посмотреть, получается из одного выражения другое при преобразовании или нет. Попробуем преобразовать (2). Замена в нем дизъюнкции на импликацию (-p \/ (-(q /\ r)) = ((=p) => (-(q /\ r)); (-p \/ (-(q /\ r)) = (p => (-(q /\ r));
как видим, приводит к выражению (p => (-(q /\ r)), которое явно отличается от (1) и звучит так: "Если переходишь улицу, то неверно, будто надо оглянуться направо и налево". Именно это предложение является эквивалентным выражению (2). Не надо удивляться его несуразности: оно получено из ложного высказывания. Если бы мы стали преобразовывать выражение (1), то тогда получили бы другую формулу (-p \/ (q /\ r)), которая по-настоящему эквивалентна ему, будучи дизъюнктивной, и читается так: "Или не переходи улицу, или надо оглянуться направо и налево".
Глоссарий
Закон логики - необходимые связи мыслей; определенность - представление предмета в одних и тех же признаках; последовательность - представление предмета вместе с его связями; обоснованность - необходимость выводить высказывания из других.
А = А краткая символическая запись закона тождества.
Противоречие - утверждение и одновременное отрицание чего-либо; А не есть не-А - краткая запись закона противоречия.
Отношение противоречия (контрадикторности) - возникает между понятиями, один из которых содержит тот или иной признак, а у другого он отсутствует; отношение противоположности (контрарности) - максимальная несовместимость.
Основание - довод, аргумент, подкрепляющий какое-либо высказывание; детерминизм - учение о причинной обусловленности.
Понятие - универсальная форма мышления.
Объем понятия - предметы, которые им охватываются; содержание понятия - признаки предметов, отображаемых в понятии.
Общее понятие - охватывает много (два и больше) предметов; единичное понятие - охватывает только один предмет; собирательное понятие - отображает преобладающую черту (свойство, признак) класса предметов; разделительное понятие - отображает обязательную черту всего класса предметов.
Совместимые понятия - имеют общие элементы в объеме; несовместимые понятия - не имеют общих элементов в объеме; перекрещивающиеся, равнозначные и подчиненные понятия - разновидности совместимых понятий; противоположные, противоречащие и соподчиненные понятия - разновидности несовместимых понятий.
Определение (дефиниция) - формулировка, задающая содержание и объем понятия; родовидовое определение - наиболее совершенный вид определения; генетическое определение - определение, близкое по совершенству к предыдущему виду.
Тавтология - ошибочное определение вроде: масло масляное; соразмерность - совпадение объемов определяющего и определяемого понятий; отрицательное определение - задание предмета через отсутствующий у него признак.
Деление понятий - операция разбиения объема понятий на виды и подвиды; основание деления - признак, по которому производится разбиение; соразмерность деления - совпадение объемов делимого понятия и суммы объемов, полученных в результате деления.
Истина - высказывание, содержание которого соответствует действительности; категорическое суждение - утверждение или отрицание каких-либо свойств у предметов.
Субъект суждения - предмет или явление, о котором идет речь; предикат - свойство, приписываемое субъекту или отрицаемое у него; связка - элемент суждения, задающий его качественную характеристику; квантор - элемент суждения, задающий его количественную характеристику (бывает двух видов).
Общеутвердительное суждение (S a P), общеотрицательное суждение (S e P), частноутвердительное суждение (S i P), частноотрицательное суждение (S o P) - названия и символические выражения всех видов суждений; единичное суждение - особый вид суждения, который имеет логические свойства общих суждений.
Распределенность - полнота знаний о используемых в суждении понятиях; распределенный термин - весь класс предметов, о которых говорит термин, обладает (или не обладает) свойством; нераспределенный термин - часть класса предметов, о которых говорит термин, обладает (или не обладает) свойством.
Логический квадрат - схема, облегчающая запоминание истинностных отношений между суждениями; противоположность (контрарность) - отношение между суждениями S a P и S e P; частичная совместимость (субконтрарность) - отношение между суждениями S i P и S o P; противоречие (контрадикторность) - отношение между суждениями 1) S a P и S o P, 2) S e P и S i P; подчинение (субординация) - отношение между суждениями 1)S a P и S i P 2) S e P и S o P.
Модальные суждения - суждения с дополнительными свойствами связки; суждения необходимости (аподиктические) - указывают на необходимые связи понятий (подобные математическим); суждения действительности (ассерторические) - указывают на фактические связи понятий; суждения возможности (проблематические) - указывают на возможные связи понятий; алетическая, аксиологическая, временная, деонтическая модальности - группы модальных суждений.
Умозаключение - рассуждение, приводящее к новым выводам; посылка - исходное суждение в умозаключениях; заключение - итоговое суждение в умозаключениях; непосредственное умозаключение - самая простая разновидность умозаключения (имеет только одну посылку); опосредствованное умозаключение - умозаключение, исходящее из нескольких посылок; индукция - движение мысли от общих посылок к частным; дедукция - движение мысли от частных посылок к общим.
Превращение - переформулирование мысли, в результате которого она меняет только логическую форму; обращение - образование новой мысли за счет перестановки местами субъекта и предиката; противопоставление предикату и противопоставление субъекту - умозаключения, образующиеся комбинацией превращения и обращения.
Силлогизм - вид очень распространенного умозаключения; меньший (маленький) термин (S) - понятие, образующее субъект заключения в силлогизме; больший (большой) термин (P) - понятие, образующее предикат заключения в силлогизме; средний термин (M) - понятие, создающее логическую связь между меньшим и большим терминами; модус - элементарная разновидность силлогизма; фигура - класс родственных силлогизмов.
Энтимема - силлогизм, в котором явно высказаны не все его составные части.
Полисиллогизм - цепочка силлогизмов (бывает двух разновидностей: прогрессивный и регрессивный); сорит - полисиллогизм, у которого не все составные части высказаны явно; эпихейрема - сложный силлогизм, составленный из двух энтимем.
Условное суждение - высказывание, в котором содержится оборот "если,... то..." или его эквиваленты; условно-категорическое умозаключение (силлогизм) - умозаключение, в котором одна посылка условное суждение, другая категорическое; утверждающий модус (modus ponens) - название одной из самых элементарных и распространенных в рассуждениях разновидностей условно-категорического силлогизма; отрицающий модус (modus tollens) - название другого чрезвычайно распространенного вида условно-категорического силлогизма.
Разделительное суждение - высказывание, перечисляющие альтернативы (чаще всего через союз "или", но не только через него); разделительно-категорическое умозаключение (силлогизм) - умозаключение, в котором одна посылка - разделительное суждение и одна - категорическое; отрицающе-утверждающий модус (modus tollendo ponens) - название одной из двух разновидностей разделительно-категорического умозаключения; утверждающе-отрицающий модус (modus ponendo tollens) - название другой разновидности разделительно-категорического умозаключения; лемматические умозаключения (силлогизмы) - сложные умозаключения, в которых комбинируются условные и разделительные суждения (подразделяются на сложные и простые, конструктивные и деструктивные).
Индукция - умозаключение, построенное на наблюдении частных случаев (см. начало главы); полная индукция - умозаключение, построенное на исчерпывающем переборе всех предметов данного рода (ее выводы всегда полностью достоверны); неполная индукция - умозаключение, построенное на наблюдении части всех предметов данного рода (достоверность ее выводов может лишь приближаться к абсолютной).
Научная индукция - индуктивное умозаключение о связи различных явлений между собой; метод сходства - вид научной индукции наиболее близкий к обычной индукции; метод различия - вид научной индукции, в которой выводы по методу сходства дополнены наблюдением различий; метод сопутствующих изменений - вид научной индукции, основанный на изучении согласующихся изменений; метод остатков - вид научной индукции, построенный на отделении неизвестного от изученного.
Аналогия - вид умозаключения, опирающегося на изучения не данного явления, а похожего на него; модель - метод познания, основанного на аналогии.
Доказательство - логическая процедура получения истинных высказываний.
Тезис - высказывание, подлежащее доказательству (или опровержению); аргументы (основания) - высказывания, с помощью которых доказывается или опровергается тезис; демонстрация (форма доказательства) - связь между тезисом и аргументами в виде умозаключения или рассуждения; опровержение - доказательство, направленное на отвод или уточнение утверждений, считавшихся ранее доказанными.
Прямое доказательство - наиболее обычное доказательство, в котором прямо фигурирует доказываемый тезис; косвенное доказательство - обходной путь в доказательных рассуждениях, когда вместо тезиса берется логически связанное с ним утверждение; доказательство от противного (апагогическое) - разновидность косвенного доказательства, в котором опровергается противоречащее тезису утверждение; разделительное доказательство - разновидность косвенного доказательства, в котором последовательно отбрасываются альтернативные тезису утверждения.
Основное заблуждение - ошибка, вызванная тем, что в рассуждении используется ложный аргумент; круг в доказательстве - ошибка, вызванная тем, что аргументы, подкрепляющие тезис, сами обосновываются через этот тезис; предвосхищение основания - ошибка, вызванная тем, что в аргументы заранее закладывается то, что надо доказать; чрезмерное доказательство - употребление в доказательстве излишних аргументов, от чего доказательство только запутывается.
Мнимое следование - общее название ошибок, возникающих из-за нарушений в форме доказательства (имеет очень много разновидностей); "после этого не значит вследствие этого" - выражение, которым обозначают встречающуюся иногда ошибку при установлении причинных связей; "от сказанного с условием к сказанному безусловно" - выражение, которым обозначают ошибку, возникающую из-за игнорирования конкретных условий для той или иной истины; "от сказанного в собирательном смысле к сказанному в разделительном смысле" - выражение, которым обозначают ошибку, возникающую из-за игнорирования разницы между собирательными и разделительными понятиями; замена доказательства другими средствами протащить нужное утверждение - недопустимый в доказательствах прием, имеющий очень много разновидностей.
Критика тезиса, критика аргументов, критика демонстрации - три вида, на которые подразделяются все способы опровержения; опровержение фактами, сведением к абсурду, доказательством антитезиса - три основные разновидности опровержения тезиса; "дамский аргумент" - выражение, которым обозначают непозволительный прием опровержения, когда мысль оппонента преувеличивается до карикатуры.
Пропозициональная переменная - символ (обычно латинская буква), заменяющий любое высказывание; логический союз - название широко распространенных в любом языке оборотов речи, с помощью которых связываются два и более повествовательных предложения (имеют символические обозначения); отрицание - простейший логический союз, выражаемый словами "неверно, что...", который не связывает, а только преобразует высказывание; конъюнкция - логический союз, выражаемый грамматическим союзом "и" а также многими другими эквивалентными ему выражениями (обозначается символом - /\); дизъюнкция - логический союз, выражаемый грамматическим союзом "или" а также другими эквивалентными ему выражениями (обозначается символом - \/); импликация - логический союз, выражаемый словами "если..., то..." а также многими другими эквивалентными ему оборотами (обозначается символом - =>); эквивалентность - логический союз, выражающий отношения равнозначности, обоюдной зависимости (обозначается символом - ó).
Читайте также: Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|