Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Требования, классификация и применяемость рулевых управлений.




ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

 

Государственное образовательное учреждение высшего

профессионального образования

ПЯТИГОРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

МЕХАНИКО-ТРАНСПОРТНЫЙ ФАКУЛЬТЕТ

КАФЕДРА «СЕРВИС АВТОМОБИЛЬНОГО ТРАНСПОРТА И ТРАНСПОРТНОГО ОБОРУДОВАНИЯ»

 

 

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И РЕМОНТ ХОДОВОЙ ЧАСТИ АВТОМОБИЛЕЙ И СИСТЕМ, ОБЕСПЕЧИВАЮЩИХ БЕЗОПАСНОСТЬ ДВИЖЕНИЯ

 

 

Учебное пособие для выполнения практических занятий студентами специальности 190603 – Сервис транспортных и технологических машин и оборудования (автомобильный транспорт)

 

Пятигорск, 2008

 

УДК 625.7

ББК 39.33 - 04

К 90

 

Составители: Куликов А.С., Бондаренков Д.О.

 

Техническое обслуживание и ремонт ходовой части автомобилей и систем, обеспечивающих безопасность движения. Учебное пособие для выполнения практических работ студентами специальности 190603 – Сервис транспортных и технологических машин и оборудования (автомобильный транспорт). / Сост. Куликов А.С., Бондаренков Д.О. - Пятигорск: ПГТУ, 2008. –90с.

 

Учебное пособие содержит необходимый материал для выполнения практических занятий по дисциплине «Техническое обслуживание и ремонт ходовой части автомобилей и систем, обеспечивающих безопасность движения».

В пособии приведены содержание и объем практических работ, методика проведения каждой работы. Данное учебное пособие служит дополнением к курсу лекций по указанной дисциплине.

Учебное пособие рассмотрено и одобрено на заседании кафедры «Сервис автомобильного транспорта и транспортного оборудования» (протокол № 1 от 2 сентября 2008г.) и учебно-методической комиссией механико-транспортного факультета ПГТУ (протокол № 1 от 11 сентября 2008г.)

Учебное пособие утверждено на научно-методическом совете ПГТУ (протокол № __ от ________________ 2008.).

 

 

©Куликов А.С., Бондаренков Д.О.. 2008

© Пятигорский государственный технологический университет, 2008


Содержание

Введение ………....................................................................................................4

 

Лекция №1

«Изучение требований к техническому состоянию ходовой части и рулевому управлению различных типов»……....................................................................5

 

Лекция №2

«Влияние эксплуатационных факторов на отказность и характеристики технического состояния автомобилей»……………………………….………..17

 

Лекция №3

«Технология ремонта ходовой части».................................................................26

 

Лекция №4

«Изучение технологической документации применяемой для организации работ на предприятиях автомобильного сервиса».............................................31

 

Лекция №5

«Производство и восстановительный ремонт шин»..........................................41

 

Лекция №6

«Изучение особенностей эксплуатации автомобилей на шинах и колесах различного типа»………………………………………………………………...57

 

Лекция №7

«Особенности диагностирования тормозных систем с пневматическим приводом тормозов»..............................................................................................68

 

Лекция №8

«Анализ основных характеристик систем, приборов и элементов освещения автомобилей различных типов. Требования к работе звуковой и световой сигнализации автомобилей»…………………………..………………………...77

 

Рекомендуемая литература...................................................................................89


Введение

Изучение дисциплины «Техническое обслуживание и ремонт ходовой части автомобилей и систем, обеспечивающих безопасность движения» имеет целью:

- привитие студентам твердых знаний по технической эксплуатации ходовой части автомобиля и систем обеспечивающих безопасность движения:

- качественное усвоение студентами основ теоретических знаний и практических навыков, необходимых для умения организовать и обеспечивать контроль за техническим состоянием, обслуживанием и ремонтом ходовой части автомобилей и систем, обеспечивающих безопасность движения (дальнейшем системы ходовой части).

Задачами изучения дисциплины являются:

- изучения особенностей эксплуатации систем ходовой части.

- усвоение нормативов технического состояния, изучение документов определяющих эти нормативы;

- освоение основами технологии диагностирования, ремонта и обслуживания систем и ходовой части, устройства и работы сопутствующего технологического и диагностического оборудования;

- получение представлений об организации рабочих мест, постов по обслуживанию и ремонту систем ходовой части автомобилей.

 


 

Тема: «Изучение требований к техническому состоянию ходовой части и рулевому управлению различных типов»

Цель занятия: Ознакомится с основными техническими требова-ниями по состоянию ходовой части и рулевого управления различных типов

 

К подвеске автомобиля, которая обеспечивает упругое соединение несущей системы с колесами автомобиля, предъявляют следующие требования:

обеспечение плавности хода;

обеспечение движения по неровным дорогам без ударов в ограничитель;

ограничение поперечного крена автомобиля;

кинематическое согласование перемещений управляемых колес, исключающее их колебания относительно шкворней;

обеспечение затухания колебаний кузова и колес;

постоянство колеи, углов наклона колес; постоянство углов наклона шкворней;

надежная передача от колес к кузову продольных и поперечных сил; снижение массы неподрессоренных частей;

Классификация подвесок приведена на схеме 12.

Независимые подвески применяют для легковых автомобилей и грузовых автомобилей высокой проходимости; зависимые автономные — для двухосных грузовых автомобилей и автобусов, редко — для легковых автомобилей, а зави­симые балансирные — для подрессоривания двух близко расположенных мостов, например, на трехосных автомобилях. Вертикальное перемещение кузова при балансирной подвеске в 2 раза меньше, чем при автономной.

Выбор типа упругого элемента определяется конструктивной схемой, требованиями компактности и снижения массы. Неметаллические упругие элементы обеспечивают хорошую плавность хода, но имеют более высокую стоимость, чем металлические. При установке пневматических и гидропневматических подвесок создается возможность регулирования высоты пола или дорожного просвета. Комбинированные упругие элементы состоят из основного и дополнительного элементов для корректирования упругой характеристики (например, листовая рессора и пружины, резиновые или пневматические дополнительные элементы).

 

Упругая характеристика

Для удовлетворения требованиям плавности хода подвеска должна обеспечивать определенный закон изменения вертикальной реакции на колесо R? в зависимости от прогиба (рис. 1.1) — эта зависимость называется упругой характеристикой подвески.

В некотором диапазоне изменения нагрузок, близком статической Rll:,, характеристики подвески должны обеспечивать оптимальную частоту колебаний: для легковых автомобилей 0,8...1,2 Гц, а для грузовых 1,2...1,9 Гц, что соответствует уровню колебаний человека при ходьбе. Частота собственных колебаний подрессоренной массы зависит от статического прогиба подвески fct'

Ω = (1/2 π) (1.1)

При движении по неровным дорогам с увеличением амплитуды колебаний подвески относительно статического положения для предотвращения ударов в ограничитель жесткость подвески должна увеличиваться. При этом RZД = (2.5...3) RZСТ - Отношение динамической нагрузки к статической характеризует коэффициент динамичности:

 

КД = RZД /RZСТ (1.2)

Площадь под кривой упругой характеристики определяет динамическую энергоемкость подвески, которая эквивалентна работе, необходимой для полной деформации упругого элемента. Для увеличения динамической энергоемкости упругая характеристика подвески должна быть прогрессивной, т. е. обеспечивать прогрессивное возрастание реакции RZД при меньшем прогибе. Такой же коэффициент динамичности может быть получен при линейной характеристике, но при этом динамический прогиб; fД чрезмерно увеличивается, что трудно обеспечить конструктивно.

Рис. 1.1. Упругая характеристика подвески

 

При изменении полезной нагрузки автомобиля от минимума до максимума нагрузка от подрессоренной части, определяющая Дт, меняется на передней подвеске на 10...30 %, на задней подвеске легковых автомобилей на 45...60 %, грузовых на 250...400 %, автобусов на 200...250 %. Для сохранения оптимальной частоты собственных колебаний кузова при переменной нагрузке необходимо поддерживать постоянство статического прогиба подвески, изменяя ее жесткость, т. е. жесткость подвески должна изменяться пропорционально приходящейся на нее нагрузке.

Существуют различные способы обеспечения постоянства статического прогиба. Например, регулирование давления воздуха в пневматической подвеске или применение дополнительных упругих элементов, включающихся в работу при увеличении нагрузки.

Кинематические схемы

От схемы подвески зависит компоновка автомобиля, параметры плавности хода, устойчивости и управляемости, массы автомобиля и др.

На рис. 2 представлены характерные схемы подвесок. Зависимая (рис. 2, а) и однорычажная независимая (рис. 2.1, б) подвески отличаются тем, что вертикальное перемещение колеса сопровождается изменением угла λ, что вызывает гироскопический эффект, возбуждающий колебания колеса относительно шкворня.

В двухрычажной подвеске с рычагами равной длины – параллело-граммммной (рис. 2, в) угловое перемещение отсутствует, но значительно поперечное перемещение Δl колеса, что ведет к быстрому изнашиванию шин и уменьшению боковой устойчивости.

 

 

Рис. 1.2 Кинематические схемы подвесок автомобилей:

а — зависимой. б — однорычэжной независимой. в — двухрычажной независимой с рычагами равной длины, г — двухрычажной независимой с рычагами разной длины; д — независимой рачажно-телескопн-ческой; в — независимой двухрычажной с торсионом, ж — независимой с продольным качанием

В двухрычажной подвеске с рычагами разной длины (рис. 1.2, г) при λ = 5...6 и р/р1 = 0,55...0,65 гироскопический момент гасится моментом сил трения в системе, а поперечное перемещение Δl = 4...5 мм компенсируется упругостью шин.

Рычажно-телескопическая подвеска передних колес легковых автомобилей — качающаяся свеча (рис. 1.2, д) обеспечивает незначительные изменения колеи, развала и схождения колес, при этом замедляется изнашивание шин, улучшается устойчивость автомобиля. Подвеска имеет один поперечный рычаг внизу, ее основной элемент — амортизаторная стойка, имеющая верхнее шарнирное крепление под крылом, что обеспечивает большое плечо между опорами стойки. В верхней опоре имеется подшипник, необходимый для исключения закручивания пружины, что могло бы вызвать стабилизирующий момент и дополнительные изгибающие нагрузки. Малые размеры и масса, большое расстояние по высоте между опорами, большой ход также относятся к преимуществам этой подвески. Конструктивные трудности обусловлены нагружением крыла в точке крепления верхней опоры.

На рис. 1.3 показаны силы, действующие в рычажно-телескопической подвеске. По линии еА действует сила РВ, которая может быть разложена на две составляющие силы: Рпр, действующую на пружины, и Qnp, перпендикулярную оси стойки, приложенную в точке А к опоре стойки. Под действием этой силы повышается трение штока поршня в направляющей стойке. В результате ухудшается реагирование подвески на мелкие дорожные неровности.

Рис. 1.3 Расчетная схема рычажно-телескопической подвески

 

При совмещении осевой линии подвески с линией еА силы РВ и Рпр совпадут, а поперечная сила Qnp исчезнет. Для этой цели пружины располагают под углом, как это выполнено на автомобиле ВАЗ-2108 (рис.1.4), или смещают пружину в сторону колеса.

Для двухрычажной параллелограмной подвески с продольным качанием показано (рис. 1.2, ж) характерно продольное перемещение колес ΔL при отсутствии поперечного перемещения и наклона.


 

 

Рис. 1.4 Рычажно-телескопическая подвеска ВАЗ-2108:

1 — телескопическая стойка; 2 — поворотный кулак; 3 — нижний рычаг; 4 — шаровая опора. 5 — ступица; 6 — поворотный рычаг; 7— нижняя опорная чашка; 8 — пружина. 9 — защитный кожух; 10 — буфер сжатия; 11 — верхняя опорная чашка; 12 — подшипник верхней опоры: 13 — верхний опорная стойка


Для грузовых автомобилей наибольшее применение получили зависимые подвески (рис. 1.2, а), а для легковых двухрычажные трапециевидные (рис, 1.2, г) и рычажно-телескопические (рис. 1.2, д).

При направляющем устройстве любого типа подвеска колес называется блокированной, если перемещения двух или нескольких колес разных осей связаны между собой. В частном случае балансирной подвески двух колес их вертикальное перемещение, равное по величине и противоположное по знаку, не вызывает деформации упругих элементов подвески.

 

Упругие элементы

К металлическим упругим элементам относятся: листовые рессоры, спиральные пружины и торсионы. Для зависимых подвесок чаше используют рессоры, а для независимых — пружины и торсионы.

Листовые рессоры. Они имеют широкое применение, так как одновременно выполняют три функции: упругого элемента, а также направляющего и гасящего устройств. К недостаткам листовых рессор относятся; высокая металлоемкость (энергия, запасаемая единицей объема листовой рессоры, в 4 раза меньше, чем у пружин и торсионов); наличие межлистового трения, отрицательно влияющего на характеристику рессоры к на ее долговечность. Часты случаи поломки листов вследствие микротрешин, возникающих при межлистовом трении.

Для увеличения долговечности листовых рессор их разгружают от скручивающих напряжений, иногда от передачи толкающих усилий; уменьшают напряжения в листах, ограничивая амплитуду или вводя дополнительные упругие элементы. Для снижения межлистового трения предусматривают смазку листов, устанавливают прокладки и др. Межлистовое трение в рессоре особенно усиливается при попадании между листами абразивных частиц, что приводит к местному поверхностному износу, задирам и образованию микротрещин, а в конечном, итоге к поломке листов. Наименьшее межлистовое трение имеет малолистовая рессора щелевого типа с необходимым зазором между листами, наименьшую массу — однолистовая рессора.

Долговечность рессор зависит от чистоты поверхности листов и точности проката, а также от их прочности. Введение дробеструйной обработки листов, применение биметаллических листов позволяют упрочнить рессоры. Износостойкость листов может быть повышена при применении покрытий из порошков самофлюсующихся сплавов на основе никеля. При использовании листов несимметричного профиля также увеличивается долговечность и снижается их масса.

При больших деформациях листы рессор прямоугольного профиля принимают вогнутую форму. На поверхности листа, испытывающей растягивающие напряжения, возникают дополнительные «мембранные» напряжения. При применении листов несимметричного профиля влияние мембранных напряжений уменьшается. При смещении нейтральной оси XX поперечного сечения происходит перераспределение напряжений между сторонами профиля, испытывающими в работе напряжения растяжения и сжатия. В результате повышается прочность и долговечность рессоры.

У профилей трапециевидного сечения допустимые напряжения сжатия в 1,22 раза больше напряжений растяжения. Наиболее применяемые профили рессорных листов специальной формы имеют трапециевидное, Т-образое или трапециевидно-ступенчатое поперечное сечение.

 

Требования, классификация и применяемость рулевых управлений.

Рулевое управление, включающее рулевой механизм, рулевой привод, а у некоторых автомобилей — рулевой усилитель, является устройством, в значительной степени обеспечивающим безопасность движения, вследствие чего к нему предъявляются высокие требования:

возможно меньшее значение минимального радиуса поворота для обеспечения хорошей маневренности автомобиля;

малое усилие на рулевом колесе, обеспечивающее легкость управления;

силовое и кинематическое следящее действие, т. е. пропорциональность между усилием на рулевом колесе и моментом сопротивления повороту управляемых колес и заданное соответствие между углом поворота рулевого колеса и углом поворота управляемых колес;

минимальное боковое скольжение колес при повороте;

минимальная передача толчков на рулевое колесо от удара управляемых колес о неровности дороги;

оптимальная упругая характеристика рулевого управления, определяющая его чувствительность и исключающая возможность возникновения автоколебании управляемых колес;

кинематическая согласованность элементов рулевого управления с подвеской для исключения самопроизвольного поворота управляемых колес при деформации упругих элементов;

минимальное влияние на стабилизацию управляемых колес;

повышенная надежность, так как выход из строя рулевого управления приводит к аварии; общие требования.

Классификация рулевого управления приведена на схеме 7,

На большинстве автомобилей управление осуществляется поворотом управля­емых колес. Такой способ управления наиболее целесообразен для легковых автомобилей, автобусов и грузовых автомобилей общего назначения, у которых для поворота управляемых колес достаточно пространства. Такой же способ управления применяется на внедорожных автомобилях большой грузоподъемности, где поворот управляемых колес большого диаметра обеспечен специальными компоновочными решениями (автомобили-самосвалы БелАЗ).

Управление при помощи складывания в горизонтальной плоскости элементов автотранспортных средств появилось в связи со стремлением повысить их проходимость, применяя колеса большого диаметра. Конструкции автопоездов, состоящих из одноосного автомобиля тягача и одноосного прицепа, шарнирно связанных между собой и принудительно поворачиваемых один относительно другого при выполнении маневра, получили развитие в 50-е годы. Такое управление имеют, например, автопоезд МоАЗ-6401-9585 (4X2), колесный трактор «Кировец-701».

 

 

Управление при помощи торможения колес одного борта или их вращения в сторону, обратную движению, применяется крайне редко и только на многоосных автомобилях.

Расположение рулевого колеса зависит от принятого в стране направления движения. Правое рулевое управление применяется в странах с левосторонним движением (Великобритания, Япония), левое рулевое управление применяется в странах, где принято движение по правой стороне (РФ, США и др.).

В двухосных автомобилях, как правило, управляемыми являются передние колеса. Исключение составляют короткобазные специальные автотранспортные средства с задними управляемыми колесами, что определяется спецификой компоновки (автопогрузчики). В автомобилях, которые должны обладать повышенной маневренностью и проходимостью, иногда все колеса выполняют управляемыми и ведущими, что позволяет снизить минимальный радиус поворота и одновременно уменьшить сопротивление движению на повороте. Уменьшение сопротивления движения на повороте объясняется тем, что, например, двухосный автомобиль со всеми управляемыми колесами прокладывает на повороте две колеи вместо четырех при одной паре передних управляемых колес. Обычно при движении по хорошей дороге управление задними колесами блокируют, чтобы не нарушить устойчивости движения на больших скоростях из-за зазоров в рулевом приводе.

В трехосных автомобилях, имеющих сближенные оси задней тележки, управление осуществляется передними колесами (ЗИЛ-131, автомобили КамАЗ, КрАЗ) Для повышения маневренности и проходимости иногда в трехосных автомобилях управляемыми являются колеса крайних осей — передней и задней. В этом случае промежуточную ось размещают посередине базы автомобиля

В четырехосных автомобилях в зависимости от конкретного назначения автомобиля управляемыми делают колеса передних двух осей или передних и задних осей. В последнем случае оси промежу­точных осей сближают и располагают посередине базы. В более редких случаях применяется управление всеми колесами четырехосного автомобиля, что уменьшает сопротивление повороту, но значительно усложняет конструкцию.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...