Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Надёжность технической системы электроснабжения

ОСНОВЫ ТЕОРИИ НАДЕЖНОСТИ

НА ТЕМУ:

ТЕОРИЯ НАДЁЖНОСТИ. НАДЁЖНОСТЬ СИСТЕМ ЭЛЕКТРОСНАБЖЕНИЯ.

 

Выполнила: Баранова Е.А.

Группа: 802

Проверил: Загорский В.А.

 

 

Самара 2013

Содержание

Введение…………………………………………………………………………3

Основные понятия………………………………………………………………4

Надежность технической системы электроснабжения……………………….4

Испытания на надежность……………………………………………………...7

Способы повышения надёжности систем электроснабжения………………..12

Заключение………………………………………………………………………13

Список источников……………………………………………………………....14

 

 

Введение

Системы электроснабжения относятся к классу сложных технических систем и определяются множеством свойств, из которых к числу важнейших относится свойство надежности технической системы.

Надежная работа устройств системы электроснабжения является необходимым условием обеспечения качественной и устойчивой работы железнодорожного транспорта. Анализ и обеспечение работоспособного состояния систем электроснабжения на этапах проектирования и эксплуатации – сложная задача, для решения которой используется математический аппарат теории надежности.

Термины и определения, используемые в теории надежности, регламентированы ГОСТ Р 53480-2009 (ГОСТ 27.002-89) «Надежность в технике. Термины и определения».

 

 

Основные понятия

Надежность – свойство готовности и влияющие на него свойства безотказности и ремонтопригодности, и поддержка технического обслуживания.

Готовность -способность изделия выполнить требуемую функцию при данных условиях в предположении, что необходимые внешние ресурсыобеспечены.

Безотказность – способность изделия выполнить требуемую функцию в заданном интервале времени при данных условиях.

Ремонтопригодность - способность изделия при данных словиях использования и технического обслуживания к поддержанию или восстановлениюсостояния, в котором оно может выполнить требуемую функцию.

Долговечность - способность изделия выполнять требуемую функцию до достижения предельного состояния при данных условиях использования и технического обслуживания.

Комплексное материально-техническое обеспечение - процесс скоординированного управления по обеспечению всех материалов и ресурсов, требуемых для эксплуатации изделия.

Сохраняемость – способность изделия выполнять требуемую функцию в течение и после хранения и (или) транспортирования.

 

Надёжность технической системы электроснабжения

Основной задачей системы электроснабжения является обеспечение эксплуатационной работы железной дороги. Для этого необходимо, чтобы мощность всех элементов системы электроснабжения была достаточной для обеспечения потребной каждому локомотиву мощности при самых разнообразных условиях работы железнодорожной линии.

Эти задачи могут быть решены только при правильно выбранных параметрах системы электроснабжения, т. е. Обеспечивающих работу оборудования в допустимых для него пределах по нагрузке и необходимое качество электрической энергии (в первую очередь уровень напряжения), а также при обеспечении необходимого резерва. Рассмотрим несколько детальнее поставленные требования.

Известно, что недопустимое для данного элемента электрической установки увеличение нагрузки может привести к выходу его из строя. С другой стороны, увеличение номинальной мощности любого элемента и, следовательно, допустимой для него нагрузки связано с увеличением затрат. Поэтому необходимо уметь выбирать параметры всех устройств системы электроснабжения так, чтобы они бесперебойно работали в течении времени, определяемого их нормальным сроком службы, и вместе с тем требовали минимальных затрат.

Наряду с этим на электрифицированных железных дорогах неизбежны редко встречающиеся случайные сочетания нагрузок (расположение поездов), вызванные особыми условиями эксплуатации, например пропуск поездов с минимальными межпоездными интервалами после снежных заносов или не предусмотренных детальных перерывах движения и др. Такие сочетания нагрузок предъявляют к системе электроснабжения весьма высокие требования. Такие редко встречающиеся сочетания нагрузок при выборе параметров системы электроснабжения не всегда принимают во внимание, пропуск же поездов в этих случаях регулируется диспетчером с учетом возможностей системы электроснабжения.

Передача электрической энергии по проводам связана с некоторым понижением напряжения у потребителя, тем большим, чем больше потребляемая их мощность и чем дальше от питающего центра он расположен. Вследствие этого поезда, удаляющиеся от подстанций, питаются электрической энергией при более низком напряжении, и если нельзя изменить режим ведения поезда, кроме тяговых двигателей, приводящих в движение поезда, располагаются также и другие, так называемые вспомогательные машины, выполняющие различные функции (обеспечение торможения, охлаждение двигателей и др.). Производительность связанных с ними устройств зависит от уровня напряжения на зажимах этих машин. Поэтому вопрос поддержания определенного значения напряжения в сети у поезда является весьма важным для обеспечения нормальной работы электрифицированных железных дорог.

Способы поддержания напряжения на необходимом уровне определяются техническими и экономическими соображениями.

Бесперебойность и экономичность работы электрифицированной дороги зависят от резервирования различных элементов устройства. Учитывая важность надежной работы электрифицированной железной дороги для обеспечения перевозочного процесса при всех условиях и особенно то, что электрическая тяга, как правило, работает на наиболее грузонапряженных магистралях, большое значение приобретает система резервирования.

Питание различных железнодорожных стационарных потребителей, а также потребителей прилегающих к железной дороге районов осуществляется от одной и той же системы электроснабжения. Поэтому при ее проектировании и сооружении вопросам надежности и экономичности питания этих потребителей также уделяют необходимое внимание. При этом питание железнодорожных потребителей в большинстве случаев прямо или косвенно связано с надежностью работы данной железнодорожной линии и должно, поэтому обеспечиваться с высокой надежностью. Систему резервирования в схемах питания не тяговых потребителей выбирают с учетом их характера и значимости.С точки зрения обеспечения надежной работы особое место в системе электроснабжения занимает контактная сеть.

Эта часть системы электроснабжения не может иметь резерва, а ее обслуживание связанно с затруднениями, особенно в условиях интенсивного движения. Большую часть работ ведут на сети под напряжением со специально устроенных изолирующих съемных вышек или отключают поочередно небольшие участки сети.

Это создает сложные условия для обслуживающего персонала и требует особого внимания к обеспечению безопасности работ. Все эти вопросы необходимо принимать во внимание, когда сравниваемые возможные технические решения не равноценны по условиям обслуживания контактной сети.

Все изложенные выше требования, предъявляемые к системе электроснабжения, могут быть удовлетворены при различных технических решениях. Окончательная оценка этих решений осуществляется сопоставлением технических и экономических их качеств, т. е. по степени надежности решения и по затратам. В затратах определяют как капитальные. Так и ежегодные эксплутационные расходы. Все эти задачи возникают не только при проектировании вновь электрифицируемой линии железной дороги, но и в процессе эксплуатации при развитии системы электроснабжения, когда рост грузопотоков приводит к увеличению размеров движения и весов поездов. Ни одно техническое решение не может быть достаточно обоснованным без соответствующей экономической оценки.

Испытания на надёжность

Основные виды испытаний на надежность — определительные и контрольные. Кроме них в ряде случаев проводятся испытания с целью прогнозирования надежности и технического состояния электрических машин.

Определительные испытания проводятся для нахождения фактических количественных показателей надежности после окончательного освоения машины производством или после ее модернизации на опытных образцах, изготовленных по серийному технологическому циклу. При определительных испытаниях оцениваются законы распределения отказов и параметры этих законов. Результаты определительных испытаний служат для оценки соответствия фактических показателей надежности техническим условиям. Контрольные испытания на надежность проводятся для контроля соответствия количественных показателей надежности требованиям стандартов или ТУ. Контрольные испытания проводятся периодически в сроки, установленные стандартами или ТУ на данную электрическую машину.

Ресурс современных электрических машин составляет 20 — 50 тыс. ч, а это значит, что проведение испытаний может затянуться на 5 —10 лет.[5] За это время информация о результатах испытаний может устареть. Ускорение испытаний может быть достигнуто за счет форсирования (ужесточения) режимов: повышения температуры, уровня вибрации, числа пусков, нагрузки на подшипники. Между ускоренными испытаниями и испытаниями в нормальных условиях должно быть найдено соответствие, для чего вводят коэффициенты ускорения:

(1)

Коэффициент ускорения есть отношение времени испытаний в обычных условиях tн ко времени испытания в форсированных режимах ty при условии равенства значений вероятностей безотказной работы в обоих случаях [1].

Основное требование, предъявляемое к ускоренным испытаниям, — идентичность процессов старения и износа по отношению к испытаниям в нормальных условиях, что означает идентичность законов распределения отказов.

Различают три основных метода проведения контрольных испытаний: однократной выборки, двукратной выборки, последовательного анализа. В отдельных случаях проводятся ускоренные контрольные испытания в нормальных условиях, когда испытания базируются на известной математической модели процесса.

Основная задача испытаний по прогнозированию — предсказать количественные характеристики надежности машины в будущем, предвидеть ресурс, остаточный ресурс, вероятность безотказной работы и т. д. Различают групповое и индивидуальное прогнозирование.

К информации о надежности относится также диагностика. Цель диагностики — определение работоспособности машины
в данный момент времени и выявление дефектов ее отдельных узлов

Рассмотрим испытания на надёжность на конкретном примере – испытание на надёжность керамических опорных изоляторов напряжением свыше 1000 В.

Изоляторы категории размещения 1 должны выдерживать испытания на надежность (гамма-процентный срок службы изоляторов с вероятностью 99,7% - не менее 30 лет; интенсивность отказов изоляторов по вине изготовителя - не более 1 × 10-8 1/ч в течение всего срока службы), входящие в состав периодических и типовых испытаний.

Объем выборки для испытаний на надежность - 10 изоляторов, отобранных из трех партий, прошедших приемосдаточные испытания. Изоляторы предъявляют к приемке партиями, партия должна состоять из изоляторов одного типа, изготовленных на одном предприятии в одинаковых технологических условиях в течение не более 30 сут. Технологическая однородность предъявляемой к приемке партии изоляторов на классы напряжений 35 кВ и выше должна быть подтверждена объективными показателями. Технологически однородные партии изоляторов рекомендуется комплектовать по результатам измерений скоростей распространения ультразвука в изоляторах. Комплектование выборки - по ГОСТ 18321. Изоляторы подвергаться испытательным воздействиям: погружаются в воду температурой (45 ± 5) °С на срок 6 мес или пропариваться при температуре (45 ± 5) °С в течение 1500 ч. Изоляторы должны испытываться шестью циклами резких изменений температуры, с перепадом не менее 70 °С (см. таблицу 1)

Таблица 1. Перепады температур.

Категория изолятора Температура Диаметр по телу Механическая прочность
  (70 ± 2) °С 150 мм включительно -
  (50 ± 2) °С более 150 мм -
2-3 (70 ± 2) °С - ниже 20 кН
2-3 (60 ± 2) °С - 20 кН и выше

Для изоляторов диаметром по телу более 150 мм допускается снижение перепада температуры до 50 °С. [3]

Изоляторы должны испытываться однократным приложением 100 % минимальной разрушающей силы. Испытательную силу до значения, равного 50 % испытательной силы, повышают с любой скоростью. Свыше 50 % испытательную силу повышают плавно со скоростью, при которой требуемое значение будет достигнуто не ранее чем через 10 с. Изоляторы считают выдержавшими испытания, если не произошло разрушения изолятора. Моментом разрушения изолятора считают его поломку или возникновение каких-либо нарушений целостности изолятора или появления внутренних (невидимых снаружи) повреждений, сопровождающихся треском и снижением показаний измерительного прибора. [4]

Изоляторы должны испытываться пятью циклами медленного изменения температуры изоляторы исполнения У должны выдерживать трехкратный цикл в диапазоне температур от минус (50 ± 2) °С до плюс (50 ± 2) °С, изоляторы исполнения УХЛ должны выдерживать пятикратный цикл в диапазоне температур от минус (60 ± 2) °С до плюс (45 ± 2) °С. После этого изоляторы должны испытываться в соответствии с предыдущими пунктами.

Изоляторы в количестве 10 шт. должны испытываться на механическую прочность при изгибе. Изоляторы в количестве 4 шт. должны испытываться на стойкость к воздействию одиночных ударов. Для испытаний на воздействие одиночного удара изолятор закрепляют в горизонтальном положении за нижнюю арматуру. По свободному фланцу в плоскости, перпендикулярной к оси изолятора, наносят одиночный удар свободно падающим или маятниковым металлическим бойком массой не менее 5 кг со сферической ударной частью диаметром не менее 50 мм. Точка нанесения удара должна находиться на расстоянии (30 ± 10) мм от края фланца со стороны изоляционной части. Энергию удара регулируют за счет изменения высоты падения и массы бойка. Величина энергии удара для изоляторов конкретных типов должна быть согласована с основным потребителем. После нанесения удара изолятор осматривают и подвергают испытанию минимальной изгибающей разрушающей силой.

Изолятор считают выдержавшим испытание, если после нанесения нормированного одиночного удара и воздействия изгибающей нагрузки не произошло разрушения изолятора, не обнаружено трещин, сколов изоляционной части, смещения, покачивания фланцев, а разрушающая механическая сила при изгибе составляет не менее 100 % номинальной. (Более подробно методика испытаний при воздействии одиночных ударов приведена в приложении Ж).

Остальные изоляторы в количестве 6 шт. испытывают до разрушения.

Изоляторы считают выдержавшими испытания на надежность, если в ходе испытаний:

- ни один изолятор не повредился;

- не произошло разрушения покрытий арматуры и армировочного шва. [3]

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...