C) Бесконечность определенного количества 2 глава
В этом бесконечном ряде действительно имеется та неточность, которая в истинном математическом бесконечном встречается лишь как видимость. Не следует смешивать эти два вида математического бесконечного, точно так же, как не следует смешивать вышеуказанные два вида философского бесконечного. Первоначально применяли для изображения истинного математического бесконечного форму ряда, и в новейшее время она опять была вызвана к жизни. Но она для него не необходима. Напротив, как сделается ясным в дальнейшем, бесконечное бесконечного ряда существенно отлично от этого истинного бесконечного. Он, напротив, уступает в этом отношении даже выражению бесконечного, даваемому дробью. А именно, бесконечный ряд содержит в себе дурную бесконечность, так как то, что должно быть выражено рядом, остается долженствованием, а то, что он выражает, обременено неисчезающим потусторонним и отлично от того, что должно быть выражено. Он бесконечен не из-за тех своих членов, которые положены, а потому, что они неполны, так как другое, которое по существу принадлежит к ним, находится по ту сторону их; то, что в нем есть, хотя бы положенных членов было сколь угодно много, есть лишь конечное в собственном смысле этого слова, положено как конечное, т. е. как нечто такое, что не есть то, чем оно должно быть. Напротив, то, что называется конечным выражением или суммой такого ряда, безупречно; оно содержит в себе полностью то значение, которого ряд только ищет; убегавшее потустороннее снова возвращено назад; то, что этот ряд есть, и то, чем он должен быть, уже не разделено, а есть одно и то же. Различие между ними, скажем сразу, заключается ближе в том, что в бесконечном ряде отрицательное находится вне тех его членов, которые имеются налицо, так как они признаются лишь частями численности. Напротив, в конечном выражении, которое есть отношение, отрицательное находится внутри него как определяемость членов отношения друг другом, которая есть возвращение в себя, соотносящееся с собою единство как отрицание отрицания (оба члена отношения имеют бытие лишь как моменты), и, следовательно, имеет внутри себя определение бесконечности. — Таким образом, обыкновенно так называемая сумма, 2/7 или 1/(1-a), есть на самом деле отношение, и это так называемое конечное выражение есть истинно бесконечное выражение. Напротив, бесконечный ряд есть на самом деле сумма; его цель состоит в том, чтобы представить то, что в себе есть отношение, в форме некоторой суммы, и имеющиеся налицо члены ряда имеют бытие как члены не некоторого отношения, а агрегата. Он, далее, есть скорее конечное выражение, ибо он есть несовершенный агрегат и остается чем-то существенно недостаточным. По тому, что в нем имеется, он есть некоторое определенное количество, но вместе с тем меньшее того определенного количества, которым он должен быть; а затем, и то, чего ему недостает, также есть некоторое определенное количество; эта недостающая часть и есть на самом деле то, что называется в ряде бесконечным только с той формальной стороны, что она есть некоторое недостающее, некоторое небытие; по своему же содержанию она есть конечное определенное количество. Только то, что налично в ряде, вместе с тем, чего ему недостает, составляет то, что представляет собою дробь, то определенное количество, которым он также должен быть, но которым он не в состоянии быть. — Слово «бесконечное» также и в сочетании «бесконечный ряд» обыкновенно кажется мнению чем-то высоким и величественным; это — вид суеверия, суеверие рассудка. Мы видели, что оно, наоборот, сводится к определению недостаточности.
Можно еще заметить, что существование таких бесконечных рядов, которые не суммируются, есть в отношении формы ряда вообще обстоятельство внешнее и случайное. Эти ряды содержат в себе высший вид бесконечности, чем суммирующиеся ряды, а именно, несоизмеримость или, иначе говоря, невозможность представить содержащееся в них количественное отношение как некоторое определенное количество, хотя бы в виде дроби. Но свойственная им форма ряда как таковая содержит в себе то же самое определение дурной бесконечности, какое присуще суммируемому ряду.
Только что указанная на примере дроби и ее ряда превратность выражения имеет также место, когда математическое бесконечное — не только что названное, а истинное — называют относительным бесконечным, а, напротив, обычное метафизическое, под которым разумеют абстрактное, дурное бесконечное, абсолютным. На самом же деле, наоборот, это метафизическое бесконечное лишь относительно, потому что отрицание, которое оно выражает, противоположно границе лишь в том смысле, что последняя остается существовать вне него и не снимается им; напротив, математическое бесконечное поистине сняло конечную границу внутри себя, так как ее потусторонность соединена с нею. Преимущественно в том смысле, в котором мы показали, что так называемая сумма или конечное выражение бесконечного ряда должно быть, наоборот, рассматриваемо как бесконечное выражение, Спиноза выставляет и поясняет примерами понятие истинной бесконечности в противоположность дурной. Его понятие будет лучше всего освещено, если я рассмотрю сказанное им об этом предмете непосредственно вслед за только что изложенными соображениями. Он сначала определяет бесконечное как абсолютное утверждение существования какой-нибудь природы, а конечное, напротив, как определенность, как отрицание. Абсолютное утверждение некоторого существования следует именно понимать как его соотношение с самим собою, означающее, что оно есть не благодаря тому, что другое есть; конечное же есть, напротив, отрицание, прекращение как соотношение с некоторым другим, начинающимся вне его. Абсолютное утверждение некоторого существования, правда, не исчерпывает понятия бесконечности; это понятие означает, что бесконечность есть утверждение не как непосредственное, а лишь как восстановленное через рефлексию другого в само себя, или, иначе говоря, как отрицание отрицательного. Но у Спинозы субстанция и ее абсолютное единство имеют форму неподвижного, т. е. не опосредствующего себя с самим собою единства, — форму некоторой оцепенелости, в которой еще не находится понятие отрицательного единства самости, субъективность.
Математическим примером, которым он поясняет истинное бесконечное (письмо XXIX), служит пространство между двумя неравными кругами, один из которых находится внутри другого, не касаясь его, и которые не концентричны. Он, повидимому, придавал столь большое значение этой фигуре и тому понятию, в качестве примера которого (44) он ее применяет, что сделал ее эпиграфом своей «Этики» (45), — «Математики», говорит он: «умозаключают, что неравенства, возможные в таком пространстве, бесконечны не от бесконечного множества частей, ибо величина этого пространства является определенной и ограниченной и я могу предположить такое пространство большим или меньшим, а они делают этот вывод на том основании, что природа этой вещи превосходит всякую определенность» (46).— Как видим, Спиноза отвергает то представление о бесконечном, согласно которому представляют себе его как множество или как незавершенный ряд, и напоминает, что в пространстве, приводимом им как пример, бесконечное не находится по ту сторону, а налично и полно; это пространство есть нечто ограниченное, но бесконечное именно потому, «что природа вещи превосходит всякую определенность», так как содержащееся в нем определение величины вместе с тем не может быть представлено как некоторое определенное количество или, употребляя вышеприведенное выражение Канта, синтезирование не может быть закончено, доведено до некоторого дискретного — определенного количества. — Каким образом противоположность между непрерывным и дискретным определенным количеством приводит к бесконечному, — это мы разъясним в одном из следующих примечаний. — Бесконечное некоторого ряда Спиноза называет бесконечным воображения, бесконечное же, как соотношение с собою самим, он называет бесконечным мышления или infinitum actu (актуально бесконечным). Оно именно actu, действительно бесконечно, так как оно завершено внутри себя и налично. Так например, ряд 0,285714... или 1+a+a2+a3... есть лишь бесконечное воображение или мнения, ибо он не обладает действительностью, ему безоговорочно чего-то недостает. Напротив, 2/7 или 1/(1-a) есть в действительности не только то, что ряд представляет собою в своих наличных членах, но вдобавок к этому еще и то, чего ему недостает, чем он только должен быть. 2/7 или 1/(1-a) есть такая же конечная величина, как заключенное между двумя кругами пространство и его неравенства в примере Спинозы, и, подобно этому пространству, она может быть сделана большей или меньшей. Но отсюда не получается несообразность большего или меньшего бесконечного, так как это определенное количество целого не касается отношения его моментов, природы вещи, т. е. качественного определения величины; то, что в бесконечном ряде имеется налицо, есть также некоторое конечное определенное количество, но кроме того еще нечто недостаточное. — Напротив, воображение не идет дальше определенного количества как такового и не принимает во внимание качественного соотношения, составляющего основание имеющейся несоизмеримости.
Несоизмеримость, имеющая место в примере, приводимом Спинозой, заключает в себе вообще криволинейные функции и приводит к тому бесконечному, которое ввела математика при действиях с этими функциями и вообще при действиях с функциями переменных величин; последнее есть именно то истинно математическое, качественное бесконечное, которое мыслил также и Спиноза. Это определение мы должны здесь рассмотреть ближе. Что касается, прежде всего, признаваемой столь важной категории переменности, под которую подводятся соотносимые в этих функциях величины, то они ближайшим образом переменны не в том смысле, в котором в дроби 2/7 переменны оба числа 2 и 7, поскольку вместо них можно поставить также 4 и 14, 6 и 21 и т. д. до бесконечности без изменения значения дроби. В этом смысле можно еще с большим правом поставить в дроби a/b вместо a и b любые числа без изменения того, что должно выражать собою a/b. Лишь в том смысле, что также и вместо x и y в какой-либо функции можно поставить бесконечное, т. е. неисчерпаемое множество чисел, a и b суть такие же переменные величины, как и x и y. Поэтому выражение «переменные величины» страдает неясностью и неудачно выбрано для определений величин, интересность которых и способы действий над которыми коренятся в чем-то совершенно другом, чем только в их переменности.
Чтобы сделать ясным, в чем заключается истинное определение тех моментов какой-нибудь функции, которыми занимается высший анализ, мы должны снова вкратце обозреть указанные выше ступени. В дробях 2/7 или a/b числа 2 и 7, каждое само по себе, суть определенные количества и соотношение для них несущественно; a и b также должны быть представителями таких определенных количеств, которые остаются тем, что они суть, также и вне отношения. Далее, 2/7 и a/b суть также некоторые постоянные определенные количества, некоторые частные; отношение составляет некоторую численность, единицей которой служит знаменатель, а численностью этих единиц — числитель или обратно. Если бы мы подставили вместо 2 и 7 — 4 и 14 и т. д., то отношение осталось бы тем же самым также и как определенное количество. Но это существенно изменяется, например, в функции y2/x=p; здесь, правда, x и y имеют значение определенных количеств; но определенное частное имеют не x и y, а лишь x и y2. Благодаря этому указанные члены отношения x и y не только не суть, во-первых, такие-то определенные количества, но и, во-вторых их отношение не есть некоторое постоянное определенное количество (а также и не имеется в виду таковое, как это, например, имеет место при a и b), не есть постоянное частное, а это частное как определенное количество совершенно переменно. Но это зависит только от того, что x находится в отношении не к y, а к квадратуy. Отношение некоторой величины к степени есть не определенное количество, а по существу качественное отношение. Степенное отношение есть то обстоятельство, которое должно рассматриваться как основное определение. — В функции же прямой линии y=ax выражение y/x=a есть обыкновенная дробь и частное; эта функция есть поэтому лишь формально функция переменных величин или, иначе говоря, x и y представляют собою здесь то же самое, что a и b в a/b, они не имеют того определения, под которым их рассматривает диференциальное и интегральное исчисление. — Вследствие особенной природы переменных величин в этом способе рассмотрения было бы целесообразно ввести для них как особое название, так и особые обозначения, отличные от обычных названия и обозначений неизвестных величин в каждом конечном, определенном ли или неопределенном уравнении, — это было бы указанием их существенного отличия от таких просто неизвестных величин, которые в себе суть вполне определенные количества или определенная совокупность определенных количеств. — И в самом деле, лишь отсутствие сознания своеобразия того, что составляет интерес высшего анализа и чем вызваны потребность в диференциальном исчислении и изобретение его, привело к включению функций первой степени, каково уравнение прямой линии, в состав этого особого исчисления; доля вины за такой формализм ложится также и на то недоразумение, по которому полагают, что возможно выполнить само по себе правильное требование обобщения какого-нибудь метода тем, что опускается та специфическая определенность, на которой основана потребность в этом методе, так что считается, что дело идет в рассматриваемой нами области только о переменных величинах вообще. Значительная доля формализма в рассмотрении, равно как и трактовке этих предметов, несомненно не имела бы места, если бы поняли, что диференциальное исчисление касается не переменных величин как таковых, а степенных определений. Но имеется еще дальнейшая ступень, на которой выступает в своем своеобразии математическое бесконечное. В уравнении, в котором x и y положены ближайшим образом как определенные некоторым степенным отношением, x и y как таковые должны еще означать некоторые определенные количества; и вот это значение совершенно утрачивается в так называемых бесконечно малых разностях, dx, dy уже не суть определенные количества и не должны обозначать таковых, а имеют значение лишь в своем соотношении, имеют смысл лишь как моменты. Они уже больше не суть нечто, если принимать нечто за определенное количество, не суть конечные разности; но они также и не суть ничто, не суть лишенный определения нуль. Вне своего отношения они — чистые нули, но их следует брать только как моменты отношения, как определения диференциального коэфициента dx/dy. В этом понятии бесконечного определенное количество подлинно завершено в некоторое качественное наличное бытие; оно положено как действительно бесконечное; оно снято не только как то или иное определенное количество, а как определенное количество вообще. Но при этом сохраняется количественная определенность как элемент определенных количеств, как принцип или, как также выражались, она сохраняется в своем первом понятии. Против этого понятия и направлено все то нападение, которому подверглось основное определение математики этого бесконечного, — диференциального и интегрального исчисления. Неправильные представления самих математиков вызвали непризнание этого понятия; но преимущественно вина за эти нападки ложится на неспособность оправдать этот предмет как понятие. Но понятия, как было указано выше, математика не может здесь обойти, ибо как математика бесконечного она не ограничивается рассмотрением конечной определенности своих предметов, — как например, в чистой математике пространство и число и их определения рассматриваются и соотносятся друг с другом лишь со стороны их конечности, — а она приводит заимствованное оттуда и рассматриваемое ею определение в тождество с его противоположностью, превращая, например, кривую линию в прямую, круг в многоугольник и т. д. Поэтому действия, к которым она позволяет себе прибегать в диференциальном и интегральном исчислении, находятся в полном противоречии с природой исключительно только конечных определений и их соотношений и, стало быть, могли бы найти свое оправдание только в понятии. Если математика бесконечного настаивала на том, что эти количественные определения суть исчезающие величины, т. е. такие величины, которые уже больше не суть какие-либо определенные количества, но не суть также и ничто, а еще представляют собою известную определенность относительно другого, то нападавшим на нее казалось, что ничего нет яснее того, что не может быть такого, как они выражались, среднего состояния между бытием и ничто. — Каково значение этого возражения и так называемого среднего состояния, это уже было указано выше при рассмотрении категории становления, примечание 4. Конечно, единство бытия и ничто не есть состояние; состояние было бы таким определением бытия и ничто, в которое эти моменты, так сказать, попали только случайно, как бы впав в болезнь или подвергшись внешнему воздействию со стороны ошибочного мышления, между тем как эта средина и это единство, исчезание, которое есть также и становление, напротив, единственно и есть их истина. То, что бесконечно, говорили далее, не подлежит сравнению как большее или меньшее; поэтому, не может быть отношения бесконечного к бесконечному, по порядкам или достоинствам бесконечного, а между тем мы встречаем таковые различия бесконечных разностей в науке, трактующей о них. — В основании этого уже упомянутого выше возражения все еще лежит то представление, что здесь идет речь об определенных количествах, сравниваемых как определенные количества, и что определения, которые уже не суть определенные количества, не имеют больше никакого отношения друг к другу. В действительности же дело обстоит наоборот: то, что только находится в отношении, не есть определенное количество. Определенное количество есть такое определение, которое вне своего отношения должно иметь совершенно безразличное к другим наличное бытие, определение, которому должно быть безразлично его отличие от некоего другого, между тем как качественное есть, напротив, лишь то, что оно есть в своем различии от другого. Поэтому указанные бесконечные величины не только сравнимы, но имеют бытие лишь как моменты сравнения, отношения. Я приведу важнейшие определения, которые были даны в математике относительно этого бесконечного; из них сделается ясным, что в их основании лежит такая мысль о предмете, которая согласуется с развитым здесь понятием, но что создатели этой отрасли математики не обосновали этой мысли как понятие, и в применениях они вынуждены были прибегать к обходным средствам, противоречащим их лучшему делу. Эта мысль не может быть определена правильнее, чем то сделал Ньютон. Я оставлю здесь в стороне определения, принадлежащие к представлению движения и скорости (от которых он главным образом и заимствовал название флюксий), так как в них мысль выступает не с надлежащею абстрактностью, а конкретно, смешана с формами, лежащими вне существа дела. Эти флюксии объясняются Ньютоном в том смысле (Princ. mathem. phil. nat., lib. I, Lemma XI, Schol.), что он понимает под ними не неделимые — форма, которою пользовались более ранние математики, Кавальери и другие, и которая содержит в себе понятие само по себе определенного количества, — а исчезающие делимые. Он объясняет далее, что он понимает под ними не суммы и отношения определенных частей, а пределы (limites) сумм и отношений. Против этого выдвигают, дескать, то возражение, что у исчезающих величин не может быть никакого последнего отношения, так как прежде, чем они исчезли, оно не последнее, а когда они исчезли, нет никакого отношения. Но под отношением исчезающих величин, указывает Ньютон, следует понимать не то отношение, которое имеет место до или после их исчезновения, а то отношение, вместе с которым они исчезают (quacum evanescunt). Точно так же первое отношение возникающих величин есть то отношение, вместе с которым они возникают. В соответствии с состоянием научного метода того времени давалось лишь объяснение, что под таким-то выражением следует понимать то-то. Но заявление, что под таким-то выражением следует понимать то-то, есть, собственно говоря, лишь субъективное предложение или же историческое требование, причем не показывают, что такое понятие само по себе необходимо и обладает внутренней истинностью. Но вышеизложенное показывает, что выставленное Ньютоном понятие соответствует тому, как в предшествующем изложении получилась бесконечная величина из рефлексии определенного количества внутрь себя. Под флюксиями Ньютон понимает величины в их исчезновении, т. е. величины, которые уже больше не суть определенные количества; он, далее, понимает под ними не отношения определенных частей, а пределы отношения. Стало быть, исчезают согласно этому пониманию как определенные количества сами по себе, члены отношения, так и самое отношение, поскольку оно было определенным количеством, предел отношения величин есть то, в чем оно есть и не есть; это означает, точнее, что оно есть то, в чем определенное количество исчезло, и тем самым сохранились лишь отношение как качественно количественное отношение, и его члены — тоже как качественно количественные моменты. — Ньютон к этому прибавляет, что из того обстоятельства, что существуют последние отношения исчезающих величин, не следует заключать, что существуют последние, величины «неделимые». Это было бы опять-таки скачком от абстрактного отношения к таким его членам, которые должны были бы сами по себе, вне своего соотношения, иметь известное значение, как неделимые, как нечто, что было бы одним, безотносительным. Чтобы предостеречь против этого недоразумения, он, кроме того, напоминает, что последние отношения суть не отношения последних величин, а только пределы, к которым отношения безгранично убывающих величин приближаются больше, чем всякая данная, т. е. конечная разность, но которых они не преступают, чтобы стать ничем. — Под последними величинами можно было бы именно понимать, как мы уже сказали, неделимые или одни. Но из определения последнего отношения устранено представление как о безразличном безотносительном одном, так и о конечном определенном количестве. — Но не нужно было бы ни безграничного убывания, которое Ньютон приписывает определенному количеству и которое лишь служит выражением бесконечного прогресса, ни определения делимости, которое здесь уже больше не имеет никакого непосредственного значения, если бы требуемое определение было развито далее в понятие некоторого такого определения величины, которое есть исключительно лишь момент отношения. Касательно сохранения отношения в исчезающих определенных количествах мы встречаем у других авторов (например, у Карно, Reflexions sur la metaphysique du Calcul infinitesimal) выражение, что в силу закона непрерывности исчезающие величины прежде, чем исчезнуть, продолжают сохранять то отношение, из которого они происходят. — Это представление выражает собою истинную природу дела, поскольку здесь разумеется не та непрерывность определенного количества, которую оно являет нам в бесконечном прогрессе, непрерывность, заключающаяся в том, что определенное количество так продолжается в своем исчезновении, что по ту сторону его снова возникает лишь некоторое конечное определенное количество, некоторый новый член ряда. Однако непрерывное движение вперед всегда представляют себе так, что проходятся значения, которые еще суть конечные определенные количества. Напротив, в том переходе, который совершается в истинное бесконечное, непрерывным оказывается отношение; оно настолько непрерывно и сохраняется, что переход исключительно только и состоит в том, что он выделяет отношение в чистом виде и заставляет исчезнуть безотносительное определение, т. е. то обстоятельство, что определенное количество, являющееся членом отношения, еще есть определенное количество также и тогда, когда оно положено вне этого соотношения. — Это очищение количественного отношения есть постольку не что иное, как то, что имеет место, когда некоторое эмпирическое существование (Dasein) постигается через понятие (begriffen wird). Эмпирическое существование благодаря этому поднимается выше самого себя таким образом, что его понятие содержит те же определения, которые содержит оно само, но охваченные в их существенности и вдвинутые в единство понятия, в котором они потеряли свое безразличное, чуждое понятию существование (Bestehen). Столь же интересна и другая форма ньютоновой трактовки интересующих нас величин, а именно, рассмотрение их как производящих величин или начал. Производная величина (genita) — это произведение или частное, корни, прямоугольники, квадраты, а также стороны прямоугольников, квадратов, — вообще, конечная величина. — «Рассматривая ее как переменную, как возрастающую или убывающую в постоянном движении и течении, я понимаю под названием моментов ее моментальные приращения или убывания. Но не следует принимать эти моменты за частицы, имеющие определенную величину (particulae finitae). Такие частицы суть не самые моменты, а величины, произведенные из моментов; под последними же следует понимать находящиеся в становлении принципы или начала конечных величин». — Ньютон отличает здесь определенное количество от него же самого, рассматривает его двояко: так, как оно есть продукт или налично сущее, и так, как оно есть в своем становлении, в своем начале и принципе, то есть как оно есть в своем понятии или — здесь это равнозначно — в своем качественном определении; в последнем количественные различия, бесконечные приращения или убывания суть лишь моменты; только уже ставшее есть нечто перешедшее в безразличие наличного бытия и во внешность, — определенное количество. — Но если философия истинного понятия и должна признать эти приведенные касательно приращений или убываний определения бесконечного, то мы должны вместе с тем сразу же заметить, что самые формы приращения и т. д. имеют место внутри категории непосредственного определенного количества и вышеуказанного непрерывного движения вперед, и что представления о приращении, приросте, увеличении x на dx или i и т. д. должны рассматриваться скорее как имеющиеся в этих методах основные недостатки, как постоянное препятствие к выделению в чистом виде определения качественного момента количества из представления об обычном определенном количестве.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|