Строение и анатомические особенности продолговатого мозга.
Продолговатый мозг имеет длину 2,5 см. Имеет форму перевернутой луковицы. Впереди 2 валика - оливы и пирамиды. Спинномозговой канал в продолговатом мозге расширяется, превращаясь в ромбовидную ямку и перемещается на дорсальную сторону(т.е. назад). Эта ямка образует 4-ый желудочек, под дном которого расположена РФ(сетчатое вещество -смесь белого и серого вещества). Белое вещество образует проводящие пути(восходящие и нисходящие) и медиальную петлю. Серое вещество образует ядра: оливу, черепных нервов, ядра РФ. От продолг. мозга отходят черепные нервы: 12-подъязычный нерв 11-добавочный 10-блуждающий 9-языкоглоточный 8-преддверно-улитковый(кохлео-вестибулярный) 7-лицевой 6-отводящий 5-тройничный 4-блоковый 3-глазо-двигательный Через продолговатый мозг осуществляются многие простые и сложнейшие рефлексы, охватывающие не отдельные метамеры тела, а системы органов, например системы пищеварения, дыхания, кровообращения. Через продолговатый мозг осуществляются следующие рефлексы: Защитные рефлексы: кашель, чиханье, мигание, слезоотделение, рвота. Пищевые рефлексы: сосание, глотание, сокоотдение (секреция) пищеварительных желез. Сердечно-сосудистые рефлексы, регулирующие деятельность сердца и кровеносных сосудов. В продолговатом мозге находится автоматически работающий дыхательный центр, обеспечивающий вентиляцию легких. Через продолговатый мозг проходят проводящие пути, соединяющие двусторонней связью кору, промежуточный, средний мозг, мозжечок и спинной Особое значение этого отдела центральной нервной системы определяется тем, что в продолговатом мозге находятся жизненно важные центры - дыхательный, сердечно-сосудистый, поэтому не только удаление, а даже повреждение продолговатого мозга заканчивается смертью.
10. Строение и анатомические особенности среднего мозга Средний мозг располагается между задним и промежуточным мозгом. Он состоит из двух основных отделов: крыши среднего мозга и ножек большого мозга. Границей между ними считается плоскость, проходящая параллельно пластинке четверохолмия через водопровод мозга. Водопровод мозга является полостью среднего мозга, он представляет собой узкий канал длиной около 1,5 см, соединяющий полости III и IV желудочков. Крыша среднего мозга, или пластинка четверохолмия является дорсальной частью среднего мозга. На целом мозге она не видна, так как сверху над ней нависает задняя часть мозолистого тела и затылочные доли полушарий большого мозга, а снизу – верхняя часть мозжечка. На наружной поверхности крыши среднего мозга располагаются четыре возвышения, бугорка – холмики. Различают верхнее и нижнее двухолмие, каждое состоит из правого и левого холмика. Верхние холмики крупнее нижних. В верхних холмиках располагаются подкорковые центры (переключающие ядра) зрительного анализатора, а в нижних – слухового анализатора. По бокам от каждого холмика к промежуточному мозгу отходят ручки холмиков. Ручка верхнего холмика направляется к латеральному коленчатому телу (СНОСКА: Латеральное коленчатое тело – структура заталамической области, является подкорковым центром зрительного анализатора), а ручка нижнего холмика – к медиальному коленчатому телу (СНОСКА: Медиальное коленчатое тело также относится к промежуточному мозгу, является подкорковым центром слухового анализатора). Ножки мозга располагаются вентральнее крыши среднего мозга. Ножки мозга выглядят в виде толстых округлых тяжей белого цвета, выходящих из моста и направляющихся вперёд, вверх и немного в стороны друг от друга к полушариям большого мозга (см. рис. 26, 27). Между ножками находится межножковая ямка, на дне которой видно заднее продырявленное вещество. На медиальной поверхности каждой ножки выходит глазодвигательный нерв (III пара).
На фронтальных разрезах ножек мозга различают две части (рис. 33):вентральную (основание ножки мозга) и дорсальную (покрышку ножки мозга). Границей между ними является чёрное вещество, состоящее из клеток, содержащих темный пигмент меланин. Основания ножек мозга образованы нервными волокнами двигательных пирамидных путей, идущими от коры большого мозга к двигательным ядрам моста, продолговатого и спинного мозга. Покрышки ножек мозга содержат, главным образом, восходящие (чувствительные) проводящие пути, направляющиеся к таламусу, а также крупные и мелкие скопления нейронов – ядра покрышки среднего мозга. Между покрышками правой и левой ножек мозга, медиально, располагаются перекрёсты покрышки. Они образованы пучками волокон красноядерно-спинномозгового, красноядерно-ретикулярного и покрышечно-спинномозгового путей, переходящих на уровне среднего мозга на противоположную сторону. Большинство ядер покрышки (кроме срединного) являются парными – по одному в каждой покрышке ножек среднего мозга. Самыми крупными из ядер покрышки являются: 1) красные ядра, расположенные в центре покрышек, 2) ядра глазодвигательных нервов (III пара), расположенные дорсальнее красных ядер. Вокруг водопровода мозга располагаются 3) ядра блоковых нервов (IV пара), 4) парное добавочное вегетативное (Якубовича), 5) ядра среднемозгового пути тройничного нерва (V пара), 6) промежуточные ядра дорсального продольного пучка и 7) ретикулярная формация. Функции среднего мозга Белое вещество среднего мозга, образованное восходящими и нисходящими проводящими путями, соединяет кору большого мозга с задним, продолговатым и спинным мозгом. Кроме транзитно проходящих пучков, в среднем мозге находятся пучки, соединяющие собственные ядра самого среднего мозга с другими отделами ЦНС. Чувствительные, двигательные и вегетативные ядра среднего мозга участвуют в осуществлении важнейших рефлекторных актов. Ядра верхних и нижних холмиков являются рефлекторными центрами непроизвольных движений, возникающих при раздражении зрительных и слуховых рецепторов. От них к нейронам передних рогов спинного мозга идёт покрышечно-спинномозговой путь.
Ядра верхних холмиков получают сенсорные импульсы от рецепторов сетчатки глаза. Они участвуют в осуществлении зрительного ориентировочного рефлекса (СНОСКА: Ориентировочный рефлекс заключается в повороте глаз и головы в сторону зрительного стимула – света), а также обеспечивают аккомодацию (СНОСКА: Аккомодация – приспособление глаз к чёткому видению предметов на разном расстоянии и при разной интенсивности освещения). Ядра нижних холмиков получают импульсацию от слуховых рецепторов. Они обеспечивают реализацию слухового ориентировочного рефлекса, заключающегося в повороте глаз и головы в сторону источника звука. Красные ядра получают импульсацию от мозжечка и посылают управляющие импульсы к мотонейронам спинного мозга по красноядерно-спинномозговому пути. Они обеспечивают тонус скелетных мышц (особенно сгибателей), а также выполнение привычных повторяющихся (автоматических) движений.
11. Строение и анатомические особенности мозжечка. Мозжечок является структурой заднего мозга, он располагается дорсальнее моста, под затылочными полюсами больших полушарий, с которыми его разделяет поперечная щель большого мозга (см. рис. 24, 25). У мозжечка различают два выпуклых полушария и червь – непарную срединную часть. Червь является наиболее древней частью мозжечка, полушария сформировались значительно позднее (у млекопитающих). Поверхности полушарий и червя разделяют поперечные параллельныеборозды (щели), между которыми расположены узкие и длинные мозжечковые извилины – листки мозжечка. Благодаря этому его поверхность у взрослого человека составляет в среднем 850 см2. У мозжечка различают верхнюю и нижнюю поверхности. Границей между этими поверхностями является глубокая горизонтальная щель, проходящая по заднему краю мозжечка. Горизонтальная щель берёт начало в боковых отделах мозжечка у места вхождения в него средних ножек. Группы листков, разделенные глубокими бороздами, образуютдольки мозжечка. Поскольку борозды мозжечка сплошные и переходят с червя на полушария, каждая долька червя связана с правой и левой стороны с симметричными дольками полушарий мозжечка.
На разрезе мозжечок состоит из серого и белого вещества.Серое вещество мозжечка представлено корой мозжечка и мозжечковыми ядрами. Кора мозжечка находится на его поверхности, её толщина составляет 1–2,5 мм. Белое вещество и ядра мозжечканаходятся внутри мозжечка. Серое вещество. Нейроны в коре мозжечка располагаются в три слоя: наружный – молекулярный, средний – слой грушевидных нейронов (ганглионарный) и внутренний – зернистый. В молекулярном и зернистом слоях залегают, в основном, мелкие нейроны. Крупные грушевидные нейроны (клетки Пуркинье), размерами до 80 мкм (в среднем 60 мкм), располагаются в среднем слое в один ряд. Это эфферентные нейроны коры мозжечка. Дендриты клеток Пуркинье располагаются в поверхностном молекулярным слое, а аксоны направляются к нейронам ядер мозжечка и таламуса. Остальные нейроны коры мозжечка являются вставочными (ассоциативными), они передают импульсы грушевидным нейронам. В толще белого вещества мозжечка имеются скопления серого вещества – парные ядра. В каждой половине мозжечка ближе всего к срединной линии располагается ядро шатра. Латеральнее его находитсяшаровидное ядро. Ещё латеральнее находится пробковидное ядро. Самое крупное и самое латеральное ядро мозжечка, зубчатое ядро,располагается в пределах полушария мозжечка. Белое вещество мозжечка. Афферентные и эфферентные волокна, связывающие мозжечок с другими отделами мозга, образуют три пары мозжечковых ножек. Нижние ножки соединяют мозжечок с продолговатым мозгом, средние – с мостом, верхние – со структурами среднего, промежуточного и конечного мозга. Функции мозжечка Мозжечок выполняет функции координации быстрых целенаправленных произвольных движений, регуляции позы и мышечного тонуса, поддержания равновесия тела. К мозжечку направляются восходящие (чувствительные) проводящие пути, по которым идут проприоцептивные импульсы от мышц, сухожилий, капсул суставов, связок. Нисходящие пути приходят в мозжечок от ядер четверохолмия, из коры (лобной, височной, теменной и затылочной долей) и подкорковых ядер полушарий большого мозга. В мозжечок приходят также импульсы от вестибулярных ядер моста. Из мозжечка, в свою очередь, выходят пучки нервных волокон ко всем отделам центральной нервной системы.
Имея обширные нервные связи с различными отделами мозга, мозжечок участвует в регуляции целенаправленных движений, делая их плавными и точными. При повреждении мозжечка и выпадении его функций нарушается соразмерное распределение тонуса мышц – сгибателей и разгибателей, движения становятся несоразмерными, резкими, размашистыми, нарушается анализ сигналов от проприорецепторов мышц и сухожилий, страдают вегетативные функции органов сердечно-сосудистой системы, пищеварительных и других органов.
12.Строение коры мозжечка Кора мозжечка человека представлена тремя слоями: гранулярным слоем (самый глубокий), слоем клеток Пуркинье и молекулярным слоем (поверхностный) Молекулярный слой на свежих срезах испещрен мелкими точками (отчего и произошло его название). В нем расположены три типа нейронов - корзинчатые клетки, звездчатые клетки и клетки Лугаро. аксоны корзинчатых клеток оканчиваются на теле (соме), а звездчатых - на дендритах клеток Пуркинье. Звездчатые и корзинчатые клетки молекулярного слоя - это тормозные интернейроны с окончаниями на клетках Пуркинье. Средний слой образован клетками Пуркинье, число которых у человека составляет 15 млн. Это крупные нейроны, их дендриты широко ветвятся в молекулярном слое. Аксоны клеток Пуркинье спускаются к ядрам мозжечка, и небольшое их количество заканчивается на вестибулярных ядрах. Это единственные аксоны, которые выходят из мозжечка. Организацию коры мозжечка принято рассматривать относительно клеток Пуркинье, образующих из него выход. Нижний слой коры мозжечка называется гранулярным, так как на срезах имеет зернистый вид. Этот слой составляют мелкие клетки-зерна (около 1 000-10 000 млн), аксоны которых идут в молекулярный слой. В зернистом слое расположены также более крупные клетки Гольджи, дендриты которых распространяются на относительно далекие расстояния в молекулярном слое, а аксоны идут к клеткам-зернам. Гранулярный слой примыкает к белому веществу мозжечка и содержит большое количество интернейронов (в том числе клетки Гольджи и клетки- зерна) около половины всех нейронов мозга.
13. Таламус. Положение, внешний вид. Микростроение таламуса: ядра, проводящие пути. Таламус (thalamus opticus), или зрительный бугор, – крупное эллипсоидное тело (рис. 3.22). Рис. 3.22. Ствол мозга и подкорковые образования сверху (горизонтальным разрезом раскрыты ядра мозжечка) 1 – хвостатое ядро; Снизу он сливается с подбугорной областью, от которой отделен гипоталамической бороздой. Латерально таламус граничит с базальными ганглиями больших полушарий, эти структуры разделяет пограничная борозда (рис. 3.30). Рис. 3.30. Фронтальный разрез головного мозга в области ножек мозга: 1 – свод; Медиальная поверхность зрительных бугров образует боковую стенку III желудочка. Эта поверхность отделена от верхней мозговой полоской, которая расширяется в каудальной части, образуя треугольник поводка. Медиальные поверхности двух зрительных бугров соединены межталамическим сращением. На верхней поверхности таламуса в передней его части отчетливо виден передний бугорок, а в основании – утолщение, называемое подушкой (pulvinar). Вентральнее подушки расположены медиальное илатеральное коленчатые тела (рис. 3.27). Рис. 3.27. Ствол мозга сбоку и сверху (мозжечок удален): 1 – третий желудочек; Основная пластинка мозговой трубки эмбриона в среднем мозге заканчивается и зрительный бугор (вместе со всем передним мозгом) оказывается производным крыльнои пластинки, где нет двигательных нейронов. Таламус состоит из серого вещества, группирующегося в ядра (рис. 3.30). Различают пять основных групп ядер таламуса: передние, интраламинарные (внутрипластинчатые), срединные (медиальные), латеральные и задние (см. Атл.). В каждую из этих групп входит по 5–6 и более ядер. Группы ядер разделены V-образной медуллярной (мозговой) пластинкой (laminae medullares), внутри которой также лежат скопления нейронов, называемые интраламинарными ядрами. В переднем ядре оканчиваетсямамиллоталамический путь, приносящий многокомпонентные импульсы из гипоталамуса. На каудальном полюсе таламуса, в так называемой подушке, оканчивается часть волокон зрительного тракта (см. Атл.). Функциональная классификация ядер таламуса Наряду с морфологической (по месту локализации) существует функциональная классификация ядер таламуса. Ядра таламуса, нейроны которых направляют аксоны в кору больших полушарий, относят кпроекционным или релейным (специфическим). На их нейронах оканчиваются аксоны нейронов восходящих сенсорных систем, кроме обонятельной. Например, в нижней части таламуса лежат основные ядра системы кожной чувствительности и чувствительности опорно-двигательного аппарата – вентролатеральное ивентро-медиальное ядра, в которых оканчиваются спинно-таламический путь, медиальная петля, тройничная петля, волокна верхних ножек мозжечка и другие пути, проводящие импульсы от кожи и проприорецепторов. К ядрам этой группы могут быть отнесены латеральное и медиальное коленчатые тела. В них происходит переключение импульсов соответственно зрительной и слуховой сенсорных систем. Разрушение проекционных ядер приводит к полному выпадению соответствующего вида чувствительности, что указывает на отсутствие иного пути для сенсорной информации в кору. Проекционные ядра имеют топическую организацию. Это означает, что каждая точка рецептивного (чувствительного) поля данной сенсорной системы проецируется в определенную группу нейронов этих ядер. Чем больше плотность рецепторных окончаний на данном участке поверхности, тем большее число нейронов в ядрах таламуса получает импульсы от этих рецепторов. Поверхность, менее насыщенная рецепторными окончаниями, имеет меньшее представительство. Та же картина повторяется и в коре больших полушарий. Наряду с передачей чувствительности в кору эти ядра выполняют сложную переработку сенсорной информации. Среди проекционных ядер выделяются и такие, которые получают афферентные импульсы от мозжечка и базальных ганглиев, и передают эфферентные сигналы в моторные области коры. Кроме того, афферентация может приходить к этим ядрам от других подкорковых структур, а проецироваться в лимбические области коры. Другие ядра, как, например, латеральные и большая часть подушки, передают возбуждение на межанализаторные или ассоциативные области коры; эти ядра относят к ассоциативным. Для них характерно наличие множественных источников афферентации. Информация к этим ядрам поступает от коленчатых тел, других ядер таламуса, миндалевидного комплекса и т.д. Нарушение нейронов ассоциативных ядер и их связей с теменно-затылочными областями коры (таламо-париетальная система) приводит к нарушению распознавания речи, расстройству внимания. Эти ядра образуют также проекции в лобные области коры (таламо-фронтальная система), благодаря которым осуществляется контроль эмоционального состояния, воспринимается пространство, время и т.д. Ассоциативные ядра таламуса считаются филогенетически молодыми, так как возникают и дифференцируются они в связи с формированием ассоциативных областей новой коры. Как и в стволовой части мозга, в таламусе есть образования, сходные по функции с ретикулярной формацией. К ним относятся срединные и интраламинарные ядра, а также некоторые ядра латеральной группы. Они оказывают на кору больших полушарий неспецифическое влияние, вызывая не только возбуждающий, но и отчетливый тормозной эффект, и потому получили название неспецифических.Подобно ретикулярной формации ствола неспецифические ядра таламуса не несут каких-либо особых высших интегративных функций, но в известной мере участвуют в регуляции различных афферентных влияний, идущих по восходящим путям сенсорных систем. Эта группа ядер получает афферентацию от большого числа подкорковых структур (красного ядра, черной субстанции, ядер мозжечка, гиппокампа, миндалины и других подкорковых ядер), они не имеют четко организованных проекций в кору. Эти ядра участвуют в организации реакций сон–бодрствование, эмоциональных состояний и т.д. Отростки нейронов таламуса образуют таламическую лучистость (лучистый венец). Волокна ее направляются к большим полушариям, где они заканчиваются главным образом в коре, а также на клетках базальных ганглиев.
14. Гипоталамус. Положение, внешний вид. Микростроение: ядра, проводящие пути. Нейросекреторные клетки. Гипоталамус (подталамическая область) является вентральной частью промежуточного мозга. Он располагается кпереди от заднего продырявленного вещества. К гипоталамусу относят сосцевидные тела, серый бугор и зрительный перекрёст. Сосцевидные тела располагаются по бокам средней линии кпереди от заднего продырявленного вещества. Это образования неправильной шаровидной формы белого цвета. Внутри каждого сосцевидного тела находятся два ядра (латеральное и медиальное), они являются подкорковыми центрами обонятельного анализатора, а также входят в лимбическую систему. Серый бугор располагается кпереди от сосцевидных тел, между зрительными трактами. Серый бугор является полым выступом нижней стенки III желудочка, образованной тонкой пластинкой серого вещества. Верхушка серого бугра вытянута в узкую полую воронку, на конце которой находится мозговой придаток, гипофиз. Гипофиз располагается в специальном углублении основания черепа, «турецком седле». В гипофизе выделяют переднюю долю (аденогипофиз – железистый гипофиз), среднюю долю (метагипофиз) и заднюю долю (нейрогипофиз). Спереди от серого бугра располагается зрительный перекрёст. В нём происходит переход на противоположную сторону части волокон зрительного нерва, идущей от медиальной половины сетчатки. После перекрёста формируются зрительные тракты, направляющиеся кзади и латерально к правому и левому коленчатому телу. В сером веществе гипоталамуса выделяют 32 пары ядер, которые подразделяют на передние, средние и задние. В передней части гипоталамуса самыми крупными являются супраоптическое (надзрительное) и паравентрикулярное (околожелудочковое) ядра. В средней части (бугор и околобугорная область) располагаются ядра серого бугра, воронки и другие. В задней части гипоталамуса наиболее крупными ядрами являются медиальное и латеральное ядра в каждом сосцевидном теле, а также заднее гипоталамическое ядро. В передних ядрах гипоталамуса находятся: 1.центр парасимпатического отдела вегетативной нервной системы; 2. центр теплоотдачи; 3. нейросекреторные клетки, продуцирующие вазопрессин (супраоптическое ядро) и окситоцин (паравентрикулярное ядро); 4. центр жажды. В средних ядрах гипоталамуса находятся: 1. центр голода и насыщения; 2. центр полового поведения; 3. центр агрессии. В задних ядрах гипоталамуса находятся: 1. центр симпатического отдела вегетативной нервной системы; 2. центр теплопродукции; 3. нейросекреторные клетки, продуцирующие рилизинг-гормоны (либерины и статины), регулирующие продукцию гипофизарных гормонов; 4. центр удовольствия. Ядра гипоталамуса получают обильное кровоснабжение. Капиллярная сеть гипоталамуса по своей разветвлённости в несколько раз больше, чем в других отделах ЦНС. Одной из особенностей капилляров гипоталамуса является их высокая проницаемость, обусловленная истончённостью стенок капилляров и их фенестрированностью (СНОСКА:Фенестрированность («окончатость») – наличие промежутков – «окон» – между смежными эндотелиальными клетками капилляров (лат. «fenestra» – окно)). В результате этого в гипоталамусе слабо выражен гематоэнцефалический барьер (ГЭБ), и нейроны гипоталамуса способны воспринимать изменения состава спинномозговой жидкости и крови (температуру, содержание ионов, наличие и количество гормонов и т.д.). Гипоталамус является центральным звеном, связующим нервные и гуморальные механизмы регуляции вегетативных функций организма. Управляющая функция гипоталамуса обусловлена способностью его клеток к секреции различных регуляторных веществ. Нейросекрет путём аксонального транспорта переносится в другие структуры мозга, спинномозговую жидкость, кровь или в гипофиз, изменяя функциональную активность органов-мишеней. Соответственно основным контурам регуляции, в гипоталамусе выделяют 4 нейроэндокринные системы. 1. Гипоталамо-экстрагипоталамная система представлена нейросекреторными клетками гипоталамуса, аксоны которых уходят в таламус, структуры лимбической системы, продолговатый мозг. Эти клетки выделяют эндогенные опиоиды, соматостатин и др. 2. Гипоталамо-аденогипофизарная система связывает ядра заднего гипоталамуса с передней долей гипофиза. По этому пути транспортируются рилизинг-гормоны (либерины и статины). Посредством их гипоталамус регулирует секрецию тропных гормонов аденогипофиза, определяющих секреторную активность желёз внутренней секреции (щитовидной, половых и других). 3. Гипоталамо-метагипофизарная система связывает нейросекреторные клетки гипоталамуса со средней долей гипофиза. По аксонам этих клеток транспортируются меланостатин и меланолиберин, которые регулируют синтез меланина – пигмента, определяющего окраску кожи, волос, радужки и других тканей организма. 4. Гипоталамо-нейрогипофизарная система связывает ядра переднего гипоталамуса с задней (железистой) долей гипофиза. По этим аксонам транспортируются вазопрессин и окситоцин, которые накапливаются в задней доле гипофиза и выделяются в кровоток по мере необходимости.
15. Строение и анатомические особенности конечного мозга Конечный мозг, или большой мозг, в процессе эволюции возник позднее других отделов головного мозга. По своей массе и величине он значительно превосходит все другие отделы головного мозга и непосредственно связан с наиболее сложными проявлениями психической и интеллектуальной деятельности человека. Конечный мозг состоит из двух полушарий большого мозга, соединенных между собой мозолистым телом, передней и задней спайками и спайкой свода. Полости конечного мозга образуют правый и левый боковые желудочки мозга, каждый из которых находится в соответствующем полушарии. Медиальную стенку каждого бокового желудочка в ростральном отделе образует прозрачная перегородка. Полушария большого мозга покрыты сверху корой мозга - слоем серого вещества, образованного нейронами более пятидесяти разновидностей. Под корой мозга в больших полушариях находится белое вещество, состоящее из миелинизированных волокон, большая часть которых соединяет кору с другими отделами и центрами головного мозга. В толще белого вещества полушарий находятся скопления серого вещества - базальные ганглии. С полушариями большого мозга сращены таламусы и ножки мозга. Слой белого вещества, который ограничивает полушария от таламусов промежуточного мозга, называется внутренней капсулой. Правое и левое полушария мозга отделены друг от друга продольной щелью. В каждом полушарии различают три поверхности - латеральную, медиальную и нижнюю, а также три края - верхний, медиальный и нижний, и три полюса - лобный, затылочный и височный. Поверхность плащевой части каждого полушария разделяется с помощью щелей и борозд на доли, дольки и извилины. Щели и первичные борозды глубокие и относятся к постоянным образованиям мозга. Они появляются на 5-м месяце внутриутробного развития и разделяют полушария на доли. Наиболее крупными щелями являются продольная щель мозга, которая разделяет полушария между собой, и поперечная щель, которая отделяет мозжечок от затылочных долей. Вторичные и особенно третичные борозды определяют индивидуальный рельеф поверхности полушарий. Их формирование происходит от рождения до 7-8 лет. У большинства людей основной рельеф - расположение глубоких постоянных борозд и крупных извилин, носит сходный характер. Крупные борозды и щели разделяют каждое полушарие на 6 долей: лобную, теменную, затылочную, височную, островковую и лимбическую. На латеральной поверхности полушария различают центральную (роландову) борозду, которая отделяет лобную долю от теменной, и боковую (силъвиеву) борозду, которая отделяет височную долю от лобной и теменной. Теменная доля ограничена от затылочной теменно-затылочной бороздой. Передненижней границей затылочной доли служит условная линия, проведенная от верхнего конца теменно-затылочной борозды вниз к нижнему краю полушария. В глубине боковой борозды находится островковая доля (или островок). Эта доля прикрыта частями лобной, теменной и височной долей. На медиальной поверхности полушария рядом с мозолистым телом расположена его лимбическая доля, отделенная от других долей поясной бороздой. 16. Морфо-функциональная характеристика шести слоев больших полушарий I. Молекулярный (плексиформный) –образован густым сплетением нервных волокон, лежащих параллельно поверхности корковых извилин. Основную массу этих волокон составляют ветвящиеся апикальные дендриты пирамидных клеток нижележащих слоев. Сюда же в наружный слой приходят афферентные таламокортикальные волокна от неспецифических ядер таламуса, регулирующих уровень возбудимости корковых нейронов. В этом слое мало клеток. За счет такой структуры слой обеспечивает активацию всей коры. II. Наружный зернистый (наружный гранулярный) - состоит из большого количества мелких звездчатых клеток, которые в вентральной части слоя дополняются малыми пирамидными клетками. Нервные волокна здесь ориентированы преимущественно параллельно поверхности коры. Благодаря этому наблюдается длительная циркуляция нервных импульсов. Это является одним из механизмов памяти. III. Наружный пирамидный - состоит в основном из пирамидных нейронов средней величины. С помощью их и клеток второго слоя происходит образование межкортикальных связей, т.е. связей между различными областями коры. Функционально второй и третий слои коры объединяют нейроны, отростки которых обеспечивают корково-корковые ассоциативные связи. IV. Внутренний зернистый (внутренний гранулярный) - содержит множество звездчатых клеток (клеток-зерен), между которыми проходят плотные пучки параллельных поверхности коры волокон. В этом слое преимущественно оканчиваются афферентные таламо-корковые волокна, идущие от специфических (проекционных) ядер таламуса. Сюда поступает вся информация от периферических рецепторов. V. Внутренний пирамидный - образован средними и крупными пирамидными клетками. Наиболее крупные пирамидные нейроны —гигантские клетки Беца - встречаются в предцентральной извилине, занятой моторной зоной коры больших полушарий. Аксоны этих эфферентных корковых нейронов формируют корково-спинномозговой (пирамидный) и корково-бульбарный пути, участвующие в координации целенаправленных двигательных актов и позы. VI. Слой веретеновидных клеток (мультиморфный) - содержит преимущественно веретеновидные нейроны. Глубинная часть этого слоя переходит в белое вещество головного мозга. Этот слой содержит тела нейронов, чьи отростки формируют корково-таламические пути.
17. Локализация вункций в КБП. Сенсорные, моторные, ассоциативные зоны коры
В настоящее время на основании наблюдения эффектов раздражения или удаления отдельных участков коры больших полушарий, клинических наблюдений, анализа биоэлектрических изменений в ответ на раздражение различных рецепторов детально изучена локализация функций в коре больших полушарий. В коре больших полушарий различают сенсорные, моторные и ассоциативные зоны. Установлено, что в различные отделы коры больших полушарий проецируются все рецепторные поля организма человека. Эти области коры были названы И. П. Павловым корковыми или центральными концами анализаторов. Кора больших полушарий представляет собой совокупность корковых концов анализаторов. К ним приходят афферентные импульсы от соответствующих рецепторов. Сенсорные зоны коры больших полушарий. Центральные отделы анализаторов называют сенсорными областями коры. Это зоны различной чувствительности, не имеющие четко очерченных границ, в периферической части они несколько перекрывают друг друга. Размер зоны зависит от количества клеток, воспринимающих раздражение от определенных рецепторов. Чем больше этих клеток, тем тоньше осуществляется анализ периферических раздражений. При поражении или разрушении сенсорных областей коры наступает нарушение сенсорных функций (слепота, глухота и др.). Соматосенсорная зона — это область проприоцептивнои, кожной и висцеральной чувствительности, располагается в задне-центральной извилине, кзади от центральной борозды (рис. 49). При ее раздражении возникает ощущение прикосновения, покалывания, онемения. Иногда возникает ощущение низкой или высокой температуры, очень редко — слабой боли. К этой зоне приходят проприоцептивные импульсы от скелетных мышц, сухожилий и суставов, а также импульсы от тактильных, температурных и других рецепторов кожи. В правое полушарие поступают импульсы от левой половины тела, а в левое — от правой. От внутренних органов импульсы поступают в зоны кожной чувствительности соответствующих частей тела. Самый большой размер имеет сенсорная область кисти руки, а затем голосового аппарата и лица. Наименьшие размеры имеют сенсорные области туловища, бедра, голени. Сенсорная зрительная зона располагается в затылочной области коры на стенках и дне шпорной борозды в правом и левом полушариях. При раздражении отдельных пунктов этой зоны возникают простейшие зрительные ощущения: вспышки света, наступление темноты, различные цветовые ощущения. Никогда не возникает ощущение сложных зрительных образов. В эту зону импульсы приходят от рецепторов сетчатки. Сенсорная слуховая зона располагается в височной области. Раздражение этой области вызывает ощущение низких или высоких, громких или тихих звуков, при этом никогда не возникает ощущение речевых звуков. В эту область афферентные импульсы приходят от рецепторов улитки. Зона вкусовых ощущений располагается в теменной области, в нижней части заднецентральной извилины. При ее раздражении возникают различные вкусовые ощущения. К ней приходят импульсы от вкусовых рецепторов полости рта и языка через ядра таламуса. Зона обонятельных ощущений располагается в гиппокамповой извилине и амоновом роге. При ее раздражении возникают простые обонятельные ощущения. К ней приходят импульсы от обонятельных рецепторов слизистой оболочки носа по обонятельному тракту. В возникновении обонятельных ощущений большое значение имеют структуры старой коры.
Представительство двигательной функции различных частей тела в передней центральной извилине соответствует представительству.сенсорной функции в заднецентральной извилине. С верхней частью полушарий связана регуляция движений нижних конечностей, затем туловища, еще ниже руки, а затем мышц лица и головы. Наибольшее пространство занимает двигательная зона кисти и пальцев руки и мышц лица, наименьшее — мышц туловища (рис. 50). Пути, по которым импульсы идут от больших полушарий к мышцам, образуют перекр
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|