Особенности глиальных клеток
⇐ ПредыдущаяСтр 2 из 2 Одной из особенностей глиальных клеток является их способность к изменению своего размера. Изменение размера глиальных клеток носит ритмический характер: фазы сокращения — 90 с, расслабления — 240 с, т.е. это очень медленный процесс. Средняя частота ритмических изменений варьирует от 2 до 20 в час. При этом отростки клетки набухают, но не укорачиваются в длине. Глиальная активность изменяется под влиянием различных биологически активных веществ: серотонин вызывает уменьшение указанной «пульсации» олигодендроглиальных клеток, норадреналин — усиление. Хлорпромазин действует так же, как и норадреналин. Физиологическая роль «пульсации» глиальных клеток состоит в проталкивании аксоплазмы нейрона и влиянии на ток жидкости в межклеточном пространстве. Физиологические процессы в нервной системе во многом зависят от миелинизации волокон нервных клеток. В центральной нервной системе миелинизация обеспечивается олигодендроглией, а в периферической — шванновскими клетками. Глиальные клетки не обладают импульсной активностью, подобно нервным, однако мембрана глиальных клеток имеет заряд, формирующий мембранный потенциал. Его изменения медленны, зависят от активности нервной системы, обусловлены не синаптическими влияниями, а изменениями химического состава межклеточной среды. Мембранный потенциал глии равен примерно 70-90 мВ. Глиальные клетки способны к распространению изменений потенциала между собой. Это распространение идет с декрементом (с затуханием). При расстоянии между раздражающим и регистрирующим электродами 50 мкм распространение возбуждения достигает точки регистрации за 30-60 мс. Распространению возбуждения между глиальными клетками способствуют специальные щелевые контакты их мембран. Эти контакты имеют пониженное сопротивление и создают условия для электротонического распространения тока от одной глиальной клетки к другой.
Так как глия находится в тесном контакте с нейронами, то процессы возбуждения нервных элементов сказываются на электрических явлениях в глиальных элементах. Это влияние связывают с тем, что мембранный потенциал глии зависит от концентрации К+ в окружающей среде. Во время возбуждения нейрона и реполяризации его мембраны вход ионов К+ усиливается. Это значительно изменяет его концентрацию вокруг глии и приводит к деполяризации ее клеточных мембран.
Взаимодействие глии и нейронов Между нейронами и глиальными клетками существуют сообщающиеся между собой щели размером 15-20 нм, так называемое интерстициальное пространство, занимающее 12-14% общего объема мозга. Во время потенциала действия концентрация ионов калия в интерстициальном пространстве может возрастать от 3-4 ммоль/л до 10 ммоль/л, что может вызвать значительную деполяризацию нервных клеток. В результате же активного транспорта ионов калия его внеклеточная концентрация может стать ниже нормальной, что вызывает гиперполяризацию нервных клеток. Глиальные клетки имеют высокую проницаемость для ионов калия. Когда несколько глиальных клеток деполяризуются вследствие местного повышения концентрации ионов калия, между деполяризованными и недеполяризованными клетками возникает ток, создающий вход ионам калия в деполяризованные глиальные клетки, в результате чего внеклеточная концентрация ионов калия уменьшается. Благодаря высокой проницаемости глиальных клеток для ионов калия и электрическим связям между ними глиальные клетки действуют как буфер в случае повышения внеклеточной концентрации калия. Данных об активном поглощении ионов калия путем ионного насоса в глиальных клетках нет, хотя, возможно, они активно поглощают нейромедиаторы в некоторых синапсах, ограничивая таким образом время действия медиатора.
Свойства глиальных клеток: А. Схема относительного расположения нейронов, глии и капилляров, составленная по электронно - микроскопическим данным. Глиальная клетка - астроцит (на рисунке желтая), в которую введен микроэлектрод для регистрации мембранного потенциала, находится между капилляром и нейроном. Все клеточные элементы разделены межклеточными промежутками шириной порядка 15 нм (на схеме относительная ширина щелей увеличена). Б. Зависимость мембранного потенциала глии (ордината) от концентрации внеклеточного К+. Средний уровень потенциала покоя составляет -89 мВ. Экспериментальные данные соответствуют величинам потенциала, рассчитанным по уравнению Нернста, за исключением данных в области концентраций калия ниже 0,3 ммоль/л. В. Деполяризация глиальных клеток во время активности окружающих нейронов зрительного нерва. Стимулы (с интервалом 1 с) показаны вертикальными стрелками. Г. Деполяризация глиальных клеток в том же препарате во время серии стимулов длительностью 20 с с частотой 1, 2 и 5 Гц, в последнем случае деполяризация достигала почти 20 мВ. Следует обратить внимание, что на рис. В и Г временной ход деполяризации гораздо медленнее по сравнению с потенциалом действия. Нервные волокна Состоят из отростка нервной клетки, покрытого оболочкой, которая формируется олигодендроцитами. Отросток нервной клетки (аксон или дендрит) в составе нервного волокна называется осевым цилиндром. Виды: · безмиелиновое (безмякотное) нервное волокно, · миелиновое (мякотное) нервное волокно. Безмиелиновые нервные волокна Находятся преимущественно в составе вегетативной нервной системы. Нейролеммоциты оболочек безмиелиновых нервных волокон, располагаясь плотно, образуют тяжи, в которых на определенном расстоянии друг от друга видны овальные ядра. В нервных волокнах внутренних органов, как правило, в таком тяже имеется не один, а несколько (10—20) осевых цилиндров, принадлежащих различным нейронам. Они могут, покидая одно волокно, переходить в смежное. Такие волокна, содержащие несколько осевых цилиндров, называются волокнами кабельного типа. При электронной микроскопии безмиелиновых нервных волокон видно, что по мере погружения осевых цилиндров в тяж неиролеммоцитов оболочки последних прогибаются, плотно охватывают осевые цилиндры и, смыкаясь над ними, образуют глубокие складки, на дне
которых и располагаются отдельные осевые цилиндры. Сближенные в области складки участки оболочки нейролеммоцита образуют сдвоенную мембрану — мезаксон, на которой как бы подвешен осевой цилиндр. Оболочки нейролеммоцитов очень тонкие, поэтому ни мезаксона, ни границ этих клеток под световым микроскопом нельзя рассмотреть, и оболочка безмиелиновых волокон в этих условиях выявляется как однородный тяж цитоплазмы, «одевающий» осевые цилиндры. Нервный импульс по безмиелиновому нервному волокну проводится как волна деполяризации цитолеммы осевого цилиндра со скоростью 1-2 м/сек. Миелиновые нервные волокна Встречаются как в центральной, так и в периферической нервной системе. Они значительно толще безмиелиновых нервных волокон. Они также состоят из осевого цилиндра, «одетого» оболочкой из нейролеммоцитов (шванновских клеток), но диаметр осевых цилиндров этого типа волокон значительно толще, а оболочка сложнее. В сформированном миелиновом волокне принято различать два слоя оболочки: 1. внутренний, более толстый, — миелиновый слой, 2. наружный, тонкий, состоящий из цитоплазмы, ядер нейролеммоцитов и нейролеммы. Миелиновый слой содержит значительное количество липидов, поэтому при обработке осмиевой кислотой он окрашивается в темно-коричневый цвет. В миелиновом слое периодически встречаются узкие светлые линии — насечки миелина, или насечки Шмидта — Лантермана. Через определенные интервалы видны участки волокна, лишенные миелинового слоя, — узловатые перехваты, или перехваты Ранвье, т.е. границы между соседними леммоцитами. Отрезок волокна между смежными перехватами называется межузловым сегментом.
В процессе развития аксон погружается в желобок на поверхности нейролеммоцита. Края желобка смыкаются. При этом образуется двойная складка плазмолеммы нейролеммоцита — мезаксон. Мезаксон удлиняется, концентрически наслаивается на осевой цилиндр и образует вокруг него плотную слоистую зону — миелиновый слой. Цитоплазма с ядрами отодвигается на периферию – образуется наружная оболочка или светлая Шванновская оболочка (при окраске осмиевой кислотой). Осевой цилиндр состоит из нейроплазмы, продольных параллельных нейрофиламентов, митохондрий. С поверхности покрыт мембраной – аксолеммой, обеспечивающей проведение нервного импульса. Скорость передачи импульса миелиновыми волокнами больше, чем безмиелиновыми. Нервный импульс в миелиновом нервном волокне проводится как волна деполяризации цитолеммы осевого цилиндра, "прыгающая" (сальтирующая) от перехвата к следующему перехвату со скоростью до 120 м/сек. В случае повреждения только отростка нейроцита регенерация возможна и протекает успешно при наличии определенных для этого условий. При этом, дистальнее места повреждения осевой цилиндр нервного волокна подвергается деструкции и рассасывается, но леммоциты при этом остаются жизнеспособными. Свободный конец осевого цилиндра выше места повреждения утолщается - образуется " колба роста ", и начинает расти со скоростью 1 мм/день вдоль оставшихся в живых леммоцитов поврежденного нервного волокна, т.е. эти леммоциты играют роль "проводника" для растущего осевого цилиндра. При благоприятных условиях растущий осевой цилиндр достигает бывшего рецепторного или эффекторного концевого аппарата и формирует новый концевой аппарат.
Заключение
Всем организмам нужна определённая степень внутренней координации и регуляции; надлежащая взаимосвязь между стимулом и реакцией необходима для поддержания стационарного состояния и выживания. Человек имеет две различные, но взаимосвязанные системы координации – нервную и эндокринную. Нервная система действует очень быстро, её эффекты чётко локализованы, а в основе её деятельности лежит электрическая и химическая передача. Эндокринная система действует более медленно, её эффекты носят диффузный характер, а в основе её действия лежит химическая передача сигнала через систему кровообращения.
Нервная система – осуществляет регуляцию функций организма и связь организма с внешней средой. Она обеспечивает приспособление организма к воздействию внешней среды и осуществление его реакций как единого целого. Раздражение, полученное рецептором, вызывает нервный импульс, который перерабатывается в центральной нервной системе и передаётся рабочему органу. Нервная система регулирует деятельность различных органов и тканей, приспосабливая их работу к изменяющимся условиям, как в отдельные моменты, так и в течение всей жизни организма.
Список используемой литературы
1. Анатомия человека: В 2 т. 2-е изд., перераб. и доп./Под ред. М.Р. Сапина М., 1993. 2. Ксенофонтова В.В. Анатомия и физиология человека: Учебное пособие. – изд. «Московский Лицей», 1997. – 150 с. 3. Лемеза Н.А., Камлюк Л.В., Лисов Н.Д. Биология в экзаменационных вопросах и ответах. – 4-е изд., испр. и доп. – М.: Рольф, 2002. – 512 с. 4. Матюшонок М.Т. Физиология и гигиена детей и подростков: Высшая школа. – Минск, 1980. – 278 с. 5. Федюкевич Н.И. Анатомия и физиология человека: Учебное пособие. – Мн.: «Современное слово», 2001. – 640 с. 6.Физиология человека под.ред. В.М.Покровского, Г.Ф. Коротько,1998 7.Агаджанян Н.А., Смирнов В.М. Нормальная физиология.- М., 2009 8.Физиология человека под ред. Р.Шмидт, Дж.Тевс, Т-1,1985 9.Орлова Р.С. Нормальная физиология.- М., 2010 10.Судаков К.В. Нормальная физиология.- М., 2006 11.Гайворонский И.В. Анатомия и физиология человека.- М., 2011
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|