Статистические мистификации
Как можно превратить чистый жир в смесь, которая на 96% не содержит жиров? Нет, тут нет никакого волшебства; на самом деле это очень просто. Если съесть два кусочка сливочного масла, то 100% калорийности будут составлять жиры. Но если положить те же два кусочка масла в стакан с водой и выпить эту тошнотворную смесь, то вы создадите на 96% свободный от жиров напиток (т. е. он будет содержать 96% воды). Вам достанется то же самое количество калорий, состоящих из одних жиров, но название «напиток, на 96% свободный от жиров» производит впечатление большей пользы для здоровья. Поэтому продукты с наклейкой «на столько-то процентов не содержит жиров» являются фальсификацией здорового питания, а этикетки наклеены с целью дезинформации (Nutrition Action Healthletter, 1991). Многие из статистических данных, на которые мы по привычке ссылаемся, удручающе неправильны. Бозелл (Bozell, 1993) усомнился в точности сведений, которые мы получаем из средств массовой информации. Например, он цитирует репортера CBS, который предупреждал, что заболеваемость СПИДом среди гетеросексуалов только в 1992 г. увеличилась на 30%. Но по данным Центра контроля над заболеваемостью, количество заболевших СПИДом среди гетеросексуалов в 1992 г. увеличилось на 17%, что является снижением скорости роста заболеваемости по сравнению с ростом на 21% в 1991 г. Точно так же Бозелл цитирует ведущего программы новостей NBC, который сообщил, что в настоящее время в США 5 миллионов бездомных, хотя Бюро переписи населения в 1990 г. насчитало только 220 000 бездомных. Различия очень большие, но как нам определить, какие из этих статистических данных ближе к истине? Во-первых, стоит выработать привычку подвергать сомнениям статистические данные, которые вам сообщают. Как они были собраны и кто их собирал? Например, трудно точно подсчитать количество бездомных — их нелегко отыскать, поскольку у них нет адресов и телефонов. Как были получены две различные оценки этого количества? Какая выборка использовалась — из центра Нью-Йорка или из Солт-Лэйк-Сити? Есть ли у вас причины считать, что данные преднамеренно искажены? Например, консервативная политическая группа «Женщины, волнующиеся за Америку» с очевидными целями поместила в общенациональных газетах призыв к запрещению мужского и женского гомосексуализма в армии. В поддержку своей позиции они цитировали научное исследование, обнаружившее, что «гомосексуальное поведение приводит к половой распущенности, связано с принуждением и не поддается контролю» (цит. по: Bozell, 1993, р. А18). Далее шло утверждение что «типичный гомосексуалист» каждый год имеет минимум 68 половых партнеров! Вы заинтересовались, где и как были получены подобные статистические данные? Надеюсь, что заинтересовались. Это «научное исследование» проводилось более 10 лет (343:) назад и специально было нацелено на изучение наиболее активных и неразборчивых в связях гомосексуалистов-мужчин, поэтому его результаты нельзя обобщать на всех гомосексуалистов. Если вы будете подвергать сомнению статистические данные, с которыми постоянно встречаетесь в жизни, у вас будет меньше шансов быть введенными в заблуждение искаженными данными.
Применение алгоритма Рассмотрим этапы применения общей схемы мышления при осмыслении и использовании вероятностей. 1. Какова цель? Всякий раз, когда вы принимаете решения, касающиеся неопределенных событий, вам необходимо применять навыки, описанные в этой главе. Это особенно необходимо, когда вам сообщают вероятностные значения или когда подразумевается степень уверенности в чем-либо. Такие ситуации возникают при решении большинства проблем и принятии многих решений, потому что они часто относятся к событиям в будущем, о которых никогда нельзя судить с полной определенностью.
2. Что известно? При постановке задачи вам необходимо знать, как получены сообщаемые вам значения вероятностей — объективно или субъективно. Вам необходимо проверить, не могут ли эти значения оказаться тенденциозными. Не повлиял ли на значение вероятности, приписываемое данному исходу, тот факт, что данный исход желателен? Хотя тема учета степени надежности источников информации обсуждалась в главе 5, она касается и данного контекста. Перед тем как использовать значения вероятностей, вам надо оценить качество имеющейся у вас информации. Поскольку значения вероятностей часто используются для убеждения людей, необходимо проверить, соответствуют ли представленные числовые данные предлагаемой вам аргументации. При выяснении того, что вам известно, ищите информацию, которую можно использовать для расчета вероятностных оценок. Например, если вам дана вероятность риска, то как она рассчитана — за год, за одно воздействие (например, рентгеновское облучение) или за всю жизнь? Имеется ли дополнительная информация, которую можно использовать в комбинации с базовыми уровнями, чтобы уточнить ваши прогнозы? 3. Какие навыки мышления позволят вам достичь поставленной цели? Для работы с вероятностными событиями было предложено большое количество методов мышления. Один из самых полезных — изображение полной древовидной диаграммы с указанием вероятностей для каждой ветви. Этот метод позволяет вам «увидеть» и объективно рассчитать вероятность различных исходов. Когда вы используете дополнительную информацию в сочетании с информацией о базовом уровне, важно правильно сформировать их отношения, чтобы обойти проблему игнорирования базового уровня. Требуется также умение узнавать типичные и часто встречающиеся ошибки (например, ошибка конъюнкции, неумение учитывать совокупные риски) и использовать правила «и» и «или» для повышения точности вероятностных решений. (344:) Поскольку в жизни очень немногое известно с полной определенностью, методы осмысления и использования вероятностей приходится применять часто. После прочтения этой главы вы должны уметь:
• Рассчитывать ожидаемые значения в ситуациях с известными вероятностями. • Узнавать случаи регрессии к среднему значению и вносить поправки в свои прогнозы с учетом этого явления. • Использовать правило «и», избегая при этом ошибок конъюнкции. • Использовать правило «или» для расчета совокупных вероятностей. • Узнавать «ошибки игрока» и избегать их. • При составлении прогнозов использовать базовые уровни. • Использовать древовидные диаграммы для принятия решений в вероятностных ситуациях. • Вносить поправки в оценки рисков с учетом совокупного характера вероятностных событий. • Понимать сущность различий между средним арифметическим и срединным значениями (медианой). • Избегать проявления чрезмерной уверенности в неопределенных ситуациях. • Понимать ограничения, накладываемые на применение экстраполяции • Использовать вероятностные суждения для совершенствования принятия решений. • При оценке неизвестных рисков учитывать такие показатели, как исторические данные, степени риска, связанного с отдельными компонентами решения, и аналогии. 4. Достигнута ли поставленная цель? Вероятности учитываются для того, чтобы количественно оценить и снизить степень неопределенности. Вы достигнете своей цели, когда сможете приписать случайным событиям более точные значения вероятностей. Краткий итог главы 1. Поскольку очень немногое в жизни известно наверняка, законы вероятностей играют решающую роль во многих аспектах нашей жизни 2. Согласно определению, вероятность — это отношение количества способов, которыми может произойти определенное событие (которое мы называем успехом), к общему числу возможных исходов (когда все возможные исходы равноправны). Этим термином также пользуются для выражения степени уверенности в появлении событий с неизвестной или известной из прошлого частотностью появления. 3. Обычно люди склонны испытывать по поводу неопределенных событий большую уверенность, чем позволяет объективная вероятность этих событий. (345:)
4. Существует несколько способов представления вероятностной информации, эквивалентных с точки зрения математики, но вызывающих резкие различия в человеческой интерпретации этой информации. 5. Для расчета вероятностей многократного появления события (например, при двух или более бросках монеты) можно использовать древовидные диаграммы. Если события независимы, то вероятность любого сочетания исходов можно найти путем перемножения значений вероятностей вдоль ветвей дерева. 6. Ожидаемое значение выигрыша или проигрыша пари можно рассчитать по формуле, в которую входят вероятности и величины выигрыша и проигрыша. 7. Субъективные вероятности — это наши личные оценки возможности появления событий, частотность которых неизвестна. Если люди считают, что они могут управлять случайными событиями, то величина субъективной вероятности содержит систематическую ошибку. 8. Большинство людей не учитывает совокупную природу вероятности событий, связанных с риском. 9. Люди оценивают вероятности драматичных и широко освещаемых в прессе событий выше, чем вероятности менее драматичных или менее известных событий. В целом люди переоценивают вероятности частых событий и недооценивают вероятности редких событий 10. Существует тенденция игнорировать информацию о базовых уровнях, особенно при составлении прогнозов на основе сочетания разной информации. 11. Лишь немногие люди понимают, что если человек получает исключительно высокие или низкие результаты при одном измерении, то при втором измерении его результаты, скорее всего, окажутся ближе к среднему значению. 12. Чаще всего используются две оценки с тяготением к центру — среднее арифметическое и срединное значение (или медиана). Каждое из них рассчитывается по особой математической формуле. 13. При оценке риска у большинства людей постоянно действуют некоторые предубеждения. Это занижение вероятности добровольного риска и риска в ситуациях, которые мы считаем находящимися под нашим контролем, и переоценка рисков в искусственно созданных ситуациях, которые хорошо запоминаются и не поддаются наблюдению. 14. Многие люди ошибочно верят, что статистические данные, выраженные точными числами (например, со многими десятичными знаками), заслуживают большего доверия. 15. Экстраполяцией называется метод оценки величины путем продолжения ряда известных ее значений. Термины для запоминания Проверьте, насколько хорошо вы разобрались в понятиях, представленных в этой главе, перечитав их определения. Если окажется, что какой-то термин вызывает у вас затруднения, обязательно перечитайте раздел, в котором он обсуждается. (346:)
Базовый уровень. Начальная или априорная вероятность появления события. В достаточно протяженном интервале времени. Обозначает необходимость многократных испытаний для получения оценки доли «успешных» исходов. Вероятность. Отношение количества способов, которыми может произойти определенное событие, к общему числу возможных исходов (когда все возможные исходы равноправны). Это характеристика того, насколько часто мы ожидаем появления события в достаточно протяженном интервале времени. Этим термином также пользуются для выражения степени уверенности и частоты появления события в прошлом. Выборка. Подгруппа контингента, которую изучают, чтобы судить обо всем контингенте. Древовидные диаграммы. Разветвляющиеся диаграммы, которые можно использовать при расчете вероятностей для учета всех возможных исходов последовательности событий. Законы случая (или вероятности). Умение прогнозировать количество или процентную долю попыток, которые окончатся определенным исходом. Значимые различия. Различия между двумя группами наблюдений, которые столь велики, что, вероятно, возникли не случайно. Игнорирование базового уровня. Постоянная тенденция к игнорированию или недооценке начальных вероятностей (базовых уровней) и к преувеличению значений вторичной вероятности при принятии решения о вероятности данного исхода. Медиана (срединное значение). Оценка с тяготением к центру, которая рассчитывается путем нахождения значения, стоящего в середине возрастающего или убывающего ряда значений. Независимые события. Два или несколько событий являются независимыми, если появление любого из этих событий не влияет на появление остальных. Нерепрезентативная выборка. Выборка, не отражающая особенности контингента, из которого она отобрана. Объективная вероятность. Количественные суждения о вероятностях событий с известными частотностями, полученные математическим путем. Ожидаемое значение выигрыша. Количество денег, которое вы ожидаете выиграть в конечном счете при повторных ставках. Согласно математической формуле ожидаемое значение выигрыша равно сумме вероятности выигрыша, умноженной на величину выигрыша, и вероятности проигрыша, умноженной на величину проигрыша. Относительная частотность. То, как часто происходит событие по отношению к другим событиям, возможным в тот же момент времени. Оценки с тяготением к центру. Рассчитанные на выборках или контингентах показатели, обобщающие все значения величины в виде одного числа. Две из таких оценок с тяготением к центру — это среднее арифметическое и медиана. Ошибка игрока. Ошибочное представление о том, что случайные события самокорректируются. Многие люди неправильно считают, что если случайное событие давно не происходило, то вероятность его появления возрастает. Ошибка конъюнкции. Ошибочное представление о том, что совместное появление одного или нескольких событий более вероятно, чем появление одного из этих событий. (347:) Размер выборки. Количество человек, выбранных для эксперимента. Регрессия к среднему значению. Обычно, когда человек получает исключительно высокие или низкие результаты при измерении какого-либо показателя, то при втором измерении его результаты, скорее всего, окажутся ближе к среднему значению. События с несколькими возможными исходами. События, исход которых зависит от двух или нескольких испытаний: например, выпадение двух орлов при двух бросках монеты. Совокупная вероятность. Вероятность появления события при проведении многократных испытаний. Среднее арифметическое. Оценка с тяготением к центру, которая рассчитывается путем сложения всех имеющихся значений и деления полученной суммы на количество слагаемых. Статистические данные. Показатели, которые рассчитываются для описания выборки. (Статистика — раздел математики, изучающий вероятности и математические характеристики распределений чисел.) Субъективная вероятность. Личные оценки вероятности появления случайных событий. Шансы. Математический способ указания вероятности, который часто применяется в области спорта. Экстраполяция. Оценка величины путем продолжения ряда известных ее значений. Явление чрезмерной уверенности. Тенденция людей испытывать большую уверенность в своих суждениях о вероятности, чем позволяют значения объективной вероятности. (348:) Глава 8. Принятие решений Принятие разумных решений Структура принятия решения Дескриптивные и прескриптивные процессы Ловушки, подстерегающие нас при принятии решений Неспособность увидеть очевидное противоречие. Чрезмерная уверенность. Эвристика наглядности. Эвристика репрезентативности. Тенденция принимать желаемое за действительное. Капкан. Психологическая реактивность. Пристрастность. Эмоциональные состояния. Легкомыслие Оценка последствий Оценка желательных и нежелательных последствий Метод исключения Подготовка рабочего листа Схематизация принятия решения. Выработка альтернативных вариантов Перечисление конкретных соображений. Взвешивание соображений. Взвешивание альтернативных вариантов. Расчет решения. Дилеммы в принятии решений Обязательства и оценки после принятия решения Когнитивный диссонанс. Оценка задним числом и предусмотрительность Применение алгоритма Краткий итог главы Термины для запоминания К вашей постели подходят шестеро врачей в белых халатах. Никто не улыбается. Результаты биопсии уже известны. Врач объясняет, что клетки имеют неправильную форму, это ненормально. Похоже, что опухоль не вполне злокачественная, но и доброкачественной ее назвать нельзя. Возможно, удалось удалить всю опухоль. Но в этом никогда нельзя быть полностью уверенными. Вам предоставляется свободный выбор. Вы можете сегодня же вечером покинуть больницу и забыть об этом неприятном эпизоде, разве что проходить осмотр раз в полгода. Тем не менее, существует вероятность, несколько выше средней, что какое-то количество злокачественных клеток осталось, и они могут начать размножаться. С другой стороны, можно хирургически удалить всю подозрительную область. Хотя операция достаточно серьезна, зато она совершенно снимает вероятность возникновения рака.
Как поступить? Как принять правильное решение? Ваша первая реакция, скорее всего, сведется к тому, что вы спросите совета у врачей. Но если вы так поступите, то велика вероятность того, что сами врачи не смогут прийти к общему мнению. Очень часто медики не могут договориться о том, каким образом лучше лечить то или иное заболевание. Особенно много противоположных мнений возникает при обсуждении лечения таких тяжелых болезней, как СПИД или рак. Возможно, одни будут полагать, что вероятность развития рака настолько мала, что вполне оправдана тактика выжидания. (Зачем торопиться с операцией?) Другие, напротив, будут придерживаться мнения, что немедленное хирургическое вмешательство будет наилучшим и безопасным решением. (Лучше перестраховаться, чем потом сожалеть...) В конце концов, окончательное решение останется за вами. (349:) Разумеется, не от всех принимаемых решений зависят жизнь или смерть человека. Мы постоянно принимаем обыденные решения, не вдаваясь в особые размышления — что надеть, что съесть на завтрак, какую купить ручку, когда лечь спать. Всю жизнь перед нами встает необходимость принимать решения — причем многие из них оказываются жизненно важными и имеют далеко идущие последствия. В этой главе мы рассмотрим процесс принятия важнейших жизненных решений. Жизненно важные решения могут быть медицинскими (как в примере, с которого начинается глава), житейскими (Жениться или не жениться? И если жениться, то на ком? Рожать ли ребенка? Если рожать, то когда? Какую профессию выбрать? Как потратить заработанные нелегким трудом деньги?) и т.д. Все эти решения являются чисто личными, и каждый человек принимает их самостоятельно. Кроме того, мы должны принимать решения по множеству политических и деловых вопросов: бурить ли нефтяные скважины в шельфе? Вложить ли дополнительные средства в развитие компании? Какие акции лучше купить? Как провести переговоры по контракту? Какую партию поддержать? Как поднять прибыли? В этой главе вы освоите те навыки, которые необходимы для принятия разумных решений. Для этого мы рассмотрим, каким образом психологи и другие специалисты изучают процесс принятия решений, изучим наиболее распространенные ловушки и промахи, рассмотрим возможный риск и разработаем общую стратегию или план, которым вы сможете воспользоваться при принятии важного решения. Принятие решения всегда подразумевает выбор из нескольких возможных альтернативных вариантов. Если вы уже прочитали предыдущие главы этой книги, то вам наверняка встретились некоторые разделы, посвященные разумному выбору. Например, в главе, посвященной анализу аргументации, мы рассматривали, каким образом те или иные доводы могут поддержать или опровергнуть вашу аргументацию. При анализе аргументации вы принимаете множество решений об уместности и точности информации, а также учитываете то, каким образом имеющиеся в вашем распоряжении доводы могут поддержать ваше действие или представление. В главах, посвященных проверке гипотез и использованию вероятностной информации, имеются целые разделы по построению древовидных диаграмм, сбору информации, расчету вероятности при принятии решения. Поскольку принятие решений является центральной темой критического мышления, различные аспекты этого процесса рассматриваются на протяжении всей этой книги. Принятие разумных решений Решение само по себе имеет место тогда, когда цель определена, информация собрана и проанализирована, когда для совершения лучшего выбора применяются специальные критерии, когда разработаны и оценены подробные планы. Уэлс и Харди (Wales & Hardi, 1984, p. 1) Процесс принятия решений часто оказывается источником стресса. Спросите любого вашего знакомого, которому не так давно довелось принять важное реше- ние, и вы скорее всего услышите о бессонных ночах, потере аппетита (или, напротив, о безумном обжорстве), раздражительности, об общем ощущении тревоги. В автобиографических и биографических книгах о жизни и деятельности президентов и многих крупных исторических личностей описываются стрессовые ситуации, связанные с принятием решений. Теодор Соренсен (Sorensen, 1965) в своей книге «Кеннеди» пишет о том стрессе, который Джон Кеннеди пережил во время берлинского кризиса, а в книге Ричарда М. Никсона «Шесть кризисов» (Nixon, 1962) говорится о напряжении, вызванном принятием политических решений в начале его карьеры. Разумеется, по сравнению с теми кризисами, которые встают перед политическими лидерами, наши собственные кризисы и проблемы кажутся мелкими и незначительными. Многие из нас могут лишь отдаленно вообразить себе, какое напряжение переживает человек, принимающий крупное политическое, военное или экономическое решение. Один из способов избежать стресса, возникающего при принятии решения, заключается в том, чтобы вообще избегать принятия решений. Однако, несмотря на то что уклонение от решений является способом борьбы со стрессами, вряд ли этот способ можно считать хорошим. Всякий раз, когда вы заметите, что пытаетесь уклониться от принятия решения, подумайте о том, что в большинстве случаев такое уклонение по существу является тоже решением, но только лишенным всех преимуществ тщательно продуманного решения проблемы.
©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|