Аккумуляция и рассеяние веществ в ландшафте
При изучении распределения поллютантов в ландшафте удобно использовать методологический подход М. А. Глазовской (1988). Она предлагает рассматривать миграционную и геохимическую структуры ландшафта, в котором происходит перемещение загрязняющих веществ преимущественно с потоками влаги и течениями ветра. Миграционная геохимическая структура ландшафтов образована системой незамкнутых круговоротов вещества с различной протяженностью в пространстве и во времени, емкостью и составом мигрирующих элементов. Наиболее протяженной круговорот – атмогидрохимический в системе суша – океан. Он осуществляется в основном с круговоротом влаги путем гидрохимического стока и возврата химических элементов с атмосферными осадками и в аэрозолях на сушу. Одновременно осуществляются внутриконтинентальные круговороты. В каскадных ландшафтно-геохимических макро- и мегасистемах суши прямая геохимическая связь между верхними и нижними звеньями каскада осуществляется водным путем с поверхностным и подземным стоком. Обратная геохимическая связь идёт преимущественно через атмосферу с воздушными массами и последующим выпадением мигрантов на поверхность с атмосферными осадками в виде пылевых масс. Следующее место в иерархии круговоротов вещества в ландшафтной сфере занимают многообразные по емкости и скорости биогеохимические циклы вещества, протекающие внутри элементарных ландшафтов. Сложная, изменяющаяся в пространстве и во времени миграционная структура ландшафта обусловливает формирование ареолов загрязнения почв различными поллютантами (переносимыми как водными, так и воздушными массами). При этом соотношение емкости миграционных потоков внутренних и внешних по отношению к данной ландшафтно-геохимической системе определяет степень аккумуляции загрязнителя, время его нахождения в ландшафте.
Направленные характер миграционных потоков и смена на пути их движения геохимических обстановок приводят к дифференциации химических элементов как в радиальном, так и в латеральном направлениях. Подвижность химических элементов и их соединений зависит от термодинамических, биогеохимических и физико-химических условий той среды, в которой движется миграционные поток. Рассматривая перемещения техногенных и нативных химических элементов и веществ интересно рассмотреть три типа миграции выделенные Алексеенко В. А. (2003). Первые тип миграции представляет собой изменение формы нахождения элементов без их существенного перемещения, например переход элементов из минеральной формы в раствор или из почв в растения. Второй тип характеризует перемещение элементов без изменений форм их нахождения. Простейшими примерами миграции этого типа может быть перемещение аэрозолей в атмосфере или обломков минералов в поверхностных водах. Третий тип миграции объединяет два предыдущих и состоит в перемещении элементов с изменением форм их нахождения. Так, при техногенном поступлении в поверхностные воды тяжелых металлов их значительная часть может находиться в форме растворов. Однако на расстоянии первых километров они переходят в минеральную и коллоидную формы и уже продолжают миграцию на расстояние сотни километров. На пути миграционных потоков встречаются участки, на которых происходит резкое изменение условий миграции, сопровождаемое концентрацией элементов - геохимические барьеры. А. И. Перельман (1976) выделяет следующие типы ландшафтно-геохимических барьеров: 1) биогеохимические (с удержанием большого ряда макро- и микроэлементов); 2) физико-химические – окислительные, восстановительные сульфидные, сульфатно-карбонатные, щелочные, кислые, испарительные, адсорбционные, термодинамические; 3) механические.
На каждом из названных барьеров задерживается определённая ассоциация химических элементов, утрачивающая подвижность в данной ландшафтон-геохимической обстановке. По форме геохимические барьеры разделяются на площадные и линейные. Геохимические барьеры являются главным фактором аккумуляции загрязнителей. Перераспределение химических элементов в элементарных и каскадных системах сопровождается наряду с аккумуляцией определённых ассоциаций элементов на геохимических барьерах формированием зон выщелачивания. Чередование в ландшафтах зон выщелачивания и обогащения их соотношение в пространстве, вещественный состав, форма, размеры характеризуют геохимическую структуру ландшафта. Н. К. Чертко (2006) предлагает выделять виды геохимической структуры на основе анализа особенностей концентрации каждого химического элемента в радиальной и латеральной структуре (табл. 1).
Таблица 1 – Виды геохимической структуры ландшафтов (Чертко Н. К., 2006)
Латеральная (катенальная) | ||||||||||||
Восходящая | Возрастание элементов к понижению рельефа | |||||||||||
Нисходящая (дисцендиальная) | Возрастание элементов к повышению рельефа | |||||||||||
Депрессионная | Уменьшение элементов к середине катены | |||||||||||
Пикообразная | Увеличение элементов в середине катены | |||||||||||
Равномерная | Элементы равномерно распределены по катене | |||||||||||
Радиальная (вертикальная) | ||||||||||||
Невыраженная | Содержание элементов почти не меняется | |||||||||||
Гумусовая | Максимум элементов в почвенном горизонте А1 | |||||||||||
Гумусово-элювиальная | Максимум элементов в горизонтах А1, А2 | |||||||||||
Гумусово-иллювиальная | Максимум элементов в горизонтах А1, В | |||||||||||
Элювиальная | Максимум элементов в почвенном горизонте А2В1 | |||||||||||
Элювиально-иллювиальная | Максимум элементов в горизонтах А2В1 и В | |||||||||||
Иллювиальная | Максимум элементов в почвенном горизонте В | |||||||||||
Лессивированная | Возрастание элементов вниз по профилю почв |
Таким образом, накопление или рассеяние определённого мигрирующего компонента определяется комплексом сочетания потоков вещества и геохимических барьеров.
|
|