Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Источники вторичного электропитания (ИВП)




 

Источники вторичного электропитания – это электронные устройства, предназначенные для преобразования энергии первичного источника электропитания, в электрическую энергию с заданными техническими характеристиками. Первичными источниками электропитания могут быть: промышленная сеть переменного тока, автономные источники переменного или постоянного тока, аккумуляторы, химические батареи и т.д. К источникам вторичного напряжения относятся, как правило, источники постоянного тока для питания электронной аппаратуры. В общем случае ИВП состоят из нескольких функционально законченных блоков, а именно: трансформатора для согласования напряжений, выпрямителя, сглаживающего фильтра, стабилизатора напряжения. Стабилизатор напряжения в ряде случаев может отсутствовать. На рисунке 95 приведены структурные схемы ИВП.

 

Рис. 95. Структурные схемы ИВП.

 

Наиболее распространена схема (а), которая включает в себя трансформатор, выпрямитель, фильтр и стабилизатор напряжения. Схема отличается простотой и надежностью, однако имеет большие массогабариты из-за размеров силового трансформатора. Этот недостаток отсутствует у схемы, изображенной не рисунке (б), в которой первичное напряжение (сеть) сначала выпрямляется и поступает на генератор высокой частоты (30¸100) кГц. Генератор нагружен на трансформатор и далее, как и в схеме (а), идут выпрямитель, фильтр и стабилизатор напряжения. Благодаря высокой частоте размеры и вес трансформатора и фильтров будут значительно меньше. Существуют другие структурные схемы ИВП.

К основным параметрам ИВП относятся: номинальные уровни входного Uвх.ном. и выходного Uвых.ном. напряжений; предельные отклонения входного и выходного напряжений от номинальных значений; коэффициенты нестабильности выходного напряжения и тока:

где Uвх –изменение входного напряжения, Uвых – изменение выходного напряжения, Iвых – изменение выходного тока;

выходная мощность (или выходной ток);

коэффициент пульсации

где Umi – амплитуда основной гармоники выпрямительного тока.

Выпрямители предназначены для преобразования энергии переменного тока в энергию постоянного тока. В зависимости от источника первичного электропитания выпрямители бывают однофазные и трехфазные. Кроме того, выпрямители могут быть однополупериодные и двухполупериодные. Схема однофазного однополупериодного выпрямителя приведена на рисунке 96.

Рис. 96. Схема однополупериодного выпрямителя (а) и временная диаграмма его работы (б).

 

На вход выпрямителя поступает синусоидальное напряжение … В интервале

времени от 0 до T/2 диод открыт и ток в нагрузке повторяет форму входного согнала. В интервале времени от Т/2 до Т диод VD закрыт. Средний выпрямительный ток в нагрузке Uн.ср. равен:

Учитывая, что

,

имеем Uн.ср=0,45Uдейст..

Аналогично получим Iн.ср.=0,318Imax=0,45Iдейст..

Однополупериодные выпрямители отличаются простотой, но имеют низкую эффективность и высокий коэффициент пульсации. Частота пульсаций равна частоте выпрямляемого напряжения.

Схема однофазного двухполупериодного выпрямителя приведена на рисунке 97.

Рис. 97. Схема однофазного двухполупериодного выпрямителя со средней

точкой (а) и мостового (б) и его диаграмма работы (в).

 

Здесь диоды работают попеременно в каждый полупериод. Средний выпрямительный ток в нагрузке равен:

Частота пульсации здесь в два раза выше, а коэффициент пульсации в два раза меньше e=0,67.

Схема двухполупериодного выпрямителя со средней точкой (рис.97 а) имеет два диода, однако требует двух обмоток трансформатора. Кроме того, обратное напряжение на диодах равно удвоенному максимальному входному напряжению Uобр.диода=2Umax. Эти недостатки отсутствуют у мостовой схемы (рис.97 б), но здесь четыре диода и КПД такого выпрямителя ниже.

Схема трехфазного однополупериодного выпрямителя приведена на рисунке 98.

 

Рис. 99. Схема трехфазного двухполупериодного выпрямителя (схема Ларионова)

 

Схема содержит 6 диодов. Для обеспечения тока в нагрузке в схеме Ларионова используются обе полуволны питающего трехфазного напряжения. Поэтому выпрямленное напряжение Uн отличается более высоким качеством.

Для рассматриваемого выпрямителя:

Частота переменной составляющей выходного напряжения в шесть раз превосходит частоту входного сигнала. Коэффициент пульсации выходного напряжения e=0,057.

Фильтры

Фильтры применяются для уменьшения напряжения пульсации на выходе выпрямителя. В настоящее время наиболее распространенными являются: емкостной фильтр, индуктивный фильтр и П-образный фильтр.

Емкостной фильтр состоит из конденсатора, подключаемого параллельно нагрузке. Для фильтра необходимо выполнить условие:

;

где wc – сопротивление емкости.

Индуктивный фильтр представляет собой дроссель низкой частоты, включенный между выпрямителем и нагрузкой. Для обеспечения большого коэффициента сглаживания необходимо, чтобы XL >> RН. Недостатком индуктивного фильтра являются большие габариты и вес дросселя.

Г-образный фильтр сочетает в себе свойства индуктивного и емкостного фильтров. Его можно рассматривать как делитель напряжения с частотно-зависимым коэффициентом передачи. Для фильтра необходимо, чтобы

.

Г-образные фильтры применяются в выпрямителях большой и средней мощности.

П-образные фильтры применяются в выпрямителях с большим внутренним сопротивлением. Они сложные, дорогие, но обеспечивают высокий коэффициент сглаживания.

а) б) в) г)

Рис. 100. Варианты сглаживающих фильтров: емкостной (а), индуктивный (б), Г- образный (в), П- образный(г).

Стабилизаторы напряжения

Стабилизатор напряжения – это электронное устройство, которое обеспечивает постоянство входного напряжения или тока нагрузки. Стабилизаторы напряжения подразделяются на параметрические, компенсационные и импульсные. Основными параметрами стабилизаторов являются:

-выходное напряжение Uвых;

-выходной ток Iвых;

-пределы изменения входного напряжения Uвх;

-рассеиваемая мощность Pрас;

- коэффициент нестабильности по напряжению KHV и току K HI:

Параметрические стабилизаторы напряжения строятся на основе стабилитронов или стабисторов (рис.101).

а) б)

Рис. 101. Схема параметрического стабилизатора напряжения (а), вольт- амперная характеристика (б).

 

Схема состоит из балластного резистора Rб и стабилитрона VD. При изменении входного напряжения Uвх напряжение на выходе стабилизатора будет изменятся незначительно, т.к. оно определяется малоизменяющимся обратным напряжением стабилитрона Uстаб.. При этом будет только изменятся ток через стабилитрон Iстаб.. Расчет стабилизатора сводится к тому, чтобы выбрать величину сопротивления Rб, при котором ток через стабилитрон лежал в пределах: Iст.min<Iст<Iст.max при изменении напряжения Uвх в заданных пределах.

Рассмотренная выше схема параметрического стабилизатора напряжения отличается низким КПД и небольшими нагрузочными токами. Нагрузочной ток можно повысить, если на выходе поставить эмиттерный повторитель (рис.102).

Рис. 102. Параметрический стабилизатор напряжения с эмиттерным повторителем.

 

Принцип работы компенсационного стабилизатора напряжения заключается в том, что при изменении входного напряжения Uвх или тока нагрузки Iн изменяется выходное напряжение Uвых. Это изменение Uвых поступает на вход усилителя, усиливается и изменяется напряжение на регулирующем элементе Uр таким образом, чтобы стабилизировать выходное напряжение Uвых.

Рис. 103. Структурная схема компенсационного стабилизатора напряжения.

 

Для схемы стабилизатора Uвх=Up+Uвых. В качестве усилителя могут использоваться транзисторные каскады, ОУ и т.д. В настоящее время в качестве стабилизаторов напряжения широко используются интегральные схемы серии К142. Они построены на принципе компенсационных стабилизаторов напряжения и подразделяются на универсальные стабилизаторы и стабилизаторы с фиксированным напряжением.

Универсальные стабилизаторы напряжения имеют внешний делитель напряжения, с помощью которого выходное напряжение можно регулировать в широких пределах. К ним относятся микросхемы К142ЕН1, К142ЕН2, К142ЕН3, К142ЕН10.

Микросхема К142ЕН3 имеет защиту по короткому замыканию и от нагрева (рис.104).

Рис. 104. Стабилизатор напряжения на ИС К142ЕН3.

 

Для увеличения тока нагрузки параллельно с микросхемой ставят мощный транзистор, например, КТ805А, КТ829 и т.д.

Микросхемы с фиксированным напряжением имеют внутренний делитель напряжения и настроены на определенное выходное напряжение. К таким ИС относятся 142 ЕН5, ЕН6, ЕН8 и др. Схемы имеют защиту от короткого замыкания. Выходное напряжение определяется буквой в конце маркировки.

Рис. 105. Стабилизатор на ИС К142ЕН5А

 

Микросхема К142ЕН6А, В, Д формирует два разнополярных напряжения по 15В для питания ОУ. В стабилизаторах с фиксированным напряжением можно повысить выходное напряжение с помощью делителя R1, R2. Иногда резистор R2 заменяют диодом или стабилитроном.

Ключевые стабилизаторы (рис.107) содержат накопительную индуктивность (дроссель) L, включенную последовательно с нагрузкой Rн. Для сглаживания пульсаций в нагрузке параллельно ей включен конденсатор Сф. Ключевой транзистор VT включен между источником питания Uвх и накопительной индуктивностью L. Устройство управления включает и выключает транзистор VT в зависимости от значения напряжения на нагрузке Uн.

Рис. 107. Ключевой стабилизатор напряжения.

При открытом состоянии транзистора напряжения поступает на выход и одновременно энергия запасается в дросселе. При отключении транзистора в нагрузке течет ток за счет емкости Сф и самоиндукции дросселя L. По виду управления ключевые стабилизаторы подразделяются на импульсные и релейные. В первых – частота управляющих сигналов постоянна, задается внешним генератором, однако в процессе работы изменяется скважность. В релейных стабилизаторах напряжения управляющие сигналы формируются с помощью компаратора и зависят от выходного напряжения. На рис.108 приведена схема релейного стабилизатора напряжения.

Рис 108. Схема релейного стабилизатора напряжения (а) и временная диаграмма его работы (б).

 

Предположим в момент времени t1 напряжение Uвых выше требуемого (U1>U2), тогда напряжение на выходе ДА1 положительное, транзистор VT2 открывается, а транзистор VT1 запирается. Ток дросселя, протекая через диод VD1, отдает накопленную энергию в нагрузку. По мере уменьшения энергии дросселя выходное напряжение стабилизатора уменьшается и в момент времени t2 компаратор запирает транзистор VT2. При этом открывается транзистор VT1 и на вход LфСф фильтра прикладывается напряжение близкое к Uвх. Ключевые стабилизаторы напряжения имеют небольшие габаритные размеры.

 

 

Литература

1. Электротехника и электроника: Учебник в 3-х книгах. / Под ред. В. Г. Герасимова. Кн. 1. Электрические и магнитные цепи. - М.: Энергоатомиздат, 1996. - 287 с.

2. Электротехника и электроника: Учебник в 3-х книгах. / Под ред. В. Г. Герасимова. Кн. 2. Электромагнитные устройства и электрические машины. - М.: Энергоатомиздат, 1997. - 272 с.

3. Электротехника и электроника: Учебник в 3-х книгах. / Под ред. В. Г. Герасимова. Кн. 3. Электрические измерения и основы электроники. – М.: Энергоатомиздат, 1998. – 432 с.

4. Рекус Г. Г., Белоусов А. И. Сборник задач по электротехнике и основам электроники. – М.: Высшая школа, 1991. – 416 с. (НТБ –217 экз.). – М.: Высшая школа, 2001. – 416с.

5. Федотов И. П. Основы электроники. - Л.: Энергоатомиздат, 1990. – 288 с.

6. Глазенко Т. Е., Прянишников В. А. Электротехника и основы электроники. – М.: Высшая школа, 1996

 

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...