Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Типы атомных электростанций




 

На атомных электростанциях, так же как на электростанциях, работающих на органическом топливе, осуществляется процесс превращения энергии, содержащейся в рабочей среде (паре), в электрическую. Различие между процессами, происходящими на АЭС и ТЭС, состоит лишь в том, что в одном случае используется энергия, выделяющаяся при распаде ядер тяжелых элементов, в другом — при горении топлива.

Атомные электрические станции, предназначенные только для производства электроэнергии, называют конденсационными электрическими станциями (КЭС). На таких электростанциях устанавливаются паровые турбины с глубоким вакуумом в конденсаторе, так как чем ниже давление пара на выходе из турбины, тем большая часть энергии рабочей среды превращается в электрическую. При этом основной поток пара конденсируется в конденсаторе и большая часть содержащейся в нем энергии теряется с охлаждающей водой.

Атомные электростанции, на которых отработавший пар наряду с выработкой электроэнергии используется для теплоснабжения, называют атомными теплоэлектроцентралями(АТЭЦ). Электростанции, предназначенные для комбинированной выработки электрической энергии и отпуска пара, а также горячей воды тепловому потребителю имеют паровые турбины с промежуточными отборами пара или с противодавлением.

Можно также использовать внутриядерную энергию только для целей горячего водоснабжения на атомных станциях теплоснабжения (АСТ). В АСТ парообразование отсутствует. В последние годы в некоторых странах большое внимание уделяется использованию теплоты комбинированных атомных установок для опреснения морских и солончаковых вод. К настоящему времени атомная энергетика используется в основном для получения электроэнергии.

В качестве двигателя на атомных электростанциях пока применяют только паровые турбины. Но в отношении реакторных установок существует большое разнообразие, отражающееся на общей организации технологического процесса электростанции и требующее их классификации. В этом отношении для атомных электростанций наибольшее значение имеет классификация по числу контуров. В числе действующих имеются одноконтурные, двухконтурные и трехконтурные АЭС.

В системе любой АЭС различают теплоноситель и рабочее тело. Рабочим телом, то есть средой, совершающей работу, с преобразованием тепловой энергии в механическую, является водяной пар. Требования к чистоте пара, поступающего на турбину, настолько высоки, что могут быть удовлетворены с экономически приемлемыми показателями только при конденсации всего пара и возврате конденсата в цикл. Поэтому контур рабочего тела для АЭС всегда замкнут и добавочная вода поступает в него лишь в небольших количествах для восполнения утечек и некоторых других потерь конденсата.

Назначение теплоносителя на АЭС — отводить теплоту, выделяющуюся в реакторе. Для предотвращения отложений на тепловыделяющих элементах необходима высокая чистота теплоносителя. Поэтому для него также необходим замкнутый контур и в особенности потому, что теплоноситель реактора всегда радиоактивен.

Если контуры теплоносителя и рабочего тела не разделены, АЭС называют одноконтурной. В реакторе происходит парообразование, пар направляется в турбину, где производит работу, превращаемую в генераторе в электроэнергию. После конденсации всего пара в конденсаторе конденсат насосом подается снова в реактор. Такие реакторы работают с принудительной циркуляцией теплоносителя, для чего устанавливают главный циркуляционный насос.

В одноконтурных схемах все оборудование работает в радиоактивных условиях, что осложняет его эксплуатацию. Большое преимущество таких схем — простота и большая экономичность.

Если контуры теплоносителя и рабочего тела разделены, то АЭС называют двухконтурной. Соответственно контур теплоносителя называют первым,а контур рабочего тела — вторым. В таких схемах реактор охлаждается теплоносителем, прокачиваемым через него и парогенератор главным циркуляционным насосом. Образованный таким образом контур теплоносителя является радиоактивным, он включает в себя не все оборудование станции, а лишь его часть. В систему первого контура входит компенсатор объема (давления), так как объем теплоносителя изменяется в зависимости от температуры.

Пар из парогенератора двухконтурной АЭС поступает в турбину, затем в конденсатор, а конденсат из него насосом возвращается в парогенератор. Образованный, таким образом, второй контур включает в себя оборудование, работающее в отсутствие радиационной активности; это упрощает эксплуатацию станции. На двухконтурной станции обязателен парогенератор— элемент, разделяющий оба контура, поэтому он в равной степени принадлежит как первому, так и второму. Передача теплоты через поверхность нагрева требует перепада температур между теплоносителем и кипящей водой в парогенераторе. Для водного теплоносителя это означает поддержание в первом контуре более высокого давления, чем давление пара, подаваемого на турбину.

Стремление избежать закипания теплоносителя в активной зоне реактора приводит к необходимости иметь в первом контуре давление, существенно превышающее давление во втором контуре.

Ядерное топливо, находящееся в тепловыделяющих элементах определенной формы, доставляется в контейнерах на электростанцию и с помощью перегрузочного крана загружается в активную зону реактора. Кассеты с отработавшими твэлами помещаются в бассейн, где выдерживаются в течение определенного времени. Когда радиоактивность горючего и материала кассет заметно уменьшается, кассеты в контейнерах вывозят на перерабатывающие заводы. Теплота, выделяющаяся в реакторе и воспринятая теплоносителем, передается рабочей среде в парогенераторе.

Пар, образовавшийся в ПГ или в реакторе (при одноконтурной схеме), направляется по паропроводу к турбине. На схеме контура двухконтурной АЭС пар направляется к турбине по трубопроводу, питательная вода подается в ПГ.

В качестве теплоносителя в двухконтурной схеме АЭС, могут быть использованы также и газы. Газовый теплоноситель прокачивается через реактор и парогенератор газодувкой,играющей ту же роль, что и главный циркуляционный насос, но в отличие от водного для газовых теплоносителей давление в первом контуре может быть не только выше, но и ниже, чем во втором.

Каждый из описанных двух типов АЭС с водным теплоносителем имеет свои преимущества и недостатки, поэтому развиваются АЭС обоих типов. У них имеется ряд общих черт, к их числу относится работа турбин на насыщенном паре средних давлений.Одноконтурные и двухконтурные АЭС с водным теплоносителем наиболее распространены, причем в мире в основном предпочтение отдается двухконтурным АЭС.

В процессе эксплуатации возможно возникновение неплотностей на отдельных участках парогенератора, особенно в местах вварки парогенераторных трубок в коллекторе или за счет коррозионных повреждений самих трубок. Если давление в первом контуре выше, чем во втором, то может возникнуть перетечка теплоносителя, вызывающая радиоактивность второго контура. В определенных пределах такая перетечка не нарушает нормальной эксплуатации АЭС. Но существуют теплоносители, интенсивно взаимодействующие с паром и водой. Это может создать опасность выброса радиоактивных веществ в обслуживаемые помещения. Таким теплоносителем является, например, жидкий натрий. Поэтому создают дополнительный, промежуточныйконтур для того, чтобы даже в аварийных ситуациях можно было избежать контакта радиоактивного натрия с водой или водяным паром. Такие АЭС называют трехконтурными.

Радиоактивный жидкометаллический теплоноситель насосом прокачивается через реактор и промежуточный теплообменник, в котором отдает теплоту нерадиоактивному жидкометаллическому теплоносителю. Последний прокачивается через парогенератор по системе, образующей промежуточный контур. Давление в промежуточном контуре поддерживается более высоким, чем в первом. Поэтому перетечка радиоактивного натрия из первого контура в промежуточный невозможна.

В связи с этим при возникновении неплотности между промежуточным и вторым контурами контакт воды или пара будет только с нерадиоактивным натрием. Система второго контура для трехконтурной схемы аналогична двухконтурной схеме. Трехконтурные АЭС наиболее дорогие из-за большого количества оборудования.

Кроме классификации атомных электростанций по числу контуров можно выделить отдельные типы АЭС в зависимости от:

1) типа реактора — на тепловых или быстрых нейтронах;

2) параметров и типа теплоносителя — с газовым теплоносителем,
теплоносителем «вода под давлением», жидкометаллическим и др.;

3) конструктивных особенностей реактора, например с реакторами канального или корпусного типа,

4) типа замедлителя реактора, например графитовым или тяжеловодным замедлителем, и др.

В настоящее время в мире существует пять типов ядерных реакторов. Это реактор ВВЭР (водо-водяной энергетический реактор), РБМК (реактор большой мощности канальный), реактор на тяжелой воде, реактор с шаровой засыпкой и газовым контуром, реактор на быстрых нейтронах. У каждого типа реактора есть особенности конструкции, отличающие его от других, хотя, безусловно, отдельные элементы конструкции могут заимствоваться из других типов. ВВЭР строились в основном на территории бывшего СССР и в Восточной Европе, реакторов типа РБМК много в России, странах Западной Европы и Юго-Восточной Азии, реакторы на тяжелой воде в основном строились в Америке.

Вся мировая атомная энергетика базируется на корпусных реакторах. Как следует из самого названия, их главной особенностью является использование для размещения активной зоны толстостенного цилиндрического корпуса. В свою очередь корпусные реакторы выполняют с водой под давлением (в английской транскрипции PWR — pressed water reactor, в русской ВВЭР — водо-водяной энергетический реактор), и кипящие (BWR — boiling water reactor). В водо-водяном реакторе циркулирует только вода под высоким давлением. В кипящем реакторе в его корпусе над поверхностью жидкости образуется насыщенный водяной пар, который направляется в паровую турбину. В России реакторы кипящего типа не строят. В корпусных реакторах и теплоносителем, и замедлителем является вода.

Альтернативой корпусным реакторам являются канальные реакторы, которые строили только в Советском Союзе под названием РБМК — реактор большой мощности канальный. Такой реактор представляет собой графитовую кладку с многочисленными каналами, в каждый из которых вставляется как бы небольшой кипящий реактор малого диаметра. Замедлителем в таком реакторе служит графит, а теплоносителем — вода.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...