Определение, классификация, основные свойства, модель ЭП.
Электронная подпись (ЭП) – информация в электронной форме, которая присоединена к другой информации в электронной форме (подписываемой информации) или иным образом связана с такой информацией и которая используется для определения лица, подписавшего информацию.
ключ проверки ЭП – уникальная последовательность символов, однозначно связанная с ключем ЭП и предназначенная для проверки подлинности электронной подписи. Свойства электронной подписи 2. Проверить подпись может любой пользователь, имеющий открытый ключ. 3. Вероятность подделки подписи пренебрежительно мала. 4. Подпись неоспорима, пользователь не может отказаться от подписи. 5. Электронный документ неизменяем. 6. Подпись и подписанное сообщение могут передаваться и храниться отдельно. ВИДЫ
• Простая ЭП – подпись, которая путем использования кодов, паролей или иных средств подтверждает факт формирования ЭП определенным лицом.
· Неквалифицированная: Позволяет определить лицо, подписавшее документ; Позволяет обнаружить факт внесения изменений в ЭД; Создается с использованием средств ЭП;
· Квалифицированная: Ключ проверки ЭП указан в квалифицированном сертификате. Для создания и проверки ЭП используются средства ЭП, получившие подтверждение соответствия в соответствии с законом об ЭП.
Схема ЭП РША. ЭП - Электронная подпись (ЦП – Цифровая Подпись) ЭП (ЦП) - это некоторые дополнительные данные, присоединяемые к основ ному сообщению, которые формируются зависящими как от сообщения, так и от секретного ключа автора сообщения. Для проверки подлинности сообщения (называемой иначе процедурой верификации) используется открытый ключ автора сообщения, который может быть доступен любому пользователю.
Пусть имеется некоторое сообщение М и некоторым пользователем А сгенерирована пара открытый/закрытый ключ для системы РША, т. е. числа eA,nA; dA. Тогда сообщение М разбивается на блоки, каждый из которых может быть представлен целым числом, не превосходящим nА. Для каждого из таких сообщений-цифр М формируется ЦП S по следующему правилу: S = МdAmod(nA). Далее ЦП присоединяется к сообщению, образуя так называемое подписанное сообщение, т. е. пару M,S. Для верификации ЦП пользователь должен получить открытый ключ А, а также «подписанное» (но возможно фальсифицированное) сообщение М, S и вычислить Ṁ =SeAmod(eA). Далее он сравнивает Ṁ с М и при их совпадении полагает, что сообщение М действительно подписано А, в противном случае отвергает его, как подделку или искажение.
Схема ЭП Эль-Гамаля.
ЭП - Электронная подпись (ЦП – Цифровая Подпись) ЭП (ЦП) - это некоторые дополнительные данные, присоединяемые к основ ному сообщению, которые формируются зависящими как от сообщения, так и от секретного ключа автора сообщения. Для проверки подлинности сообщения (называемой иначе процедурой верификации) используется открытый ключ автора сообщения, который может быть доступен любому пользователю.
Генерирование ключей: 1) генерируется большое простое число р и примитивный элемент а над конечным полем GF(p); 2) генерируется число x: 1 <x< р - 2; 3) вычисляется у = аxmod(р); 4) выбирается открытый ключ верификации ЦП: (р, а, у) и секретный ключ создания ЦП: x.
Формирование ЦП Если пользователь А хочет подписать сообщение m, представленное в виде числа, принадлежащего Zp, то он выполняет следующие операции: 1) генерирует секретное число k: 1 ≤ k ≤ р – 2; gcd(k, р - l) = 1, где gcd – это НОД 2) вычисляет r = akmod(р); 3) вычисляет k-1 mod(p - 1); 4) вычисляет s = k-l(m - xr)mod(p - l); 5) Формирует ЦП S к сообщению m как пару чисел S = (r, t).
Проверка (верификация) ЦП Для того чтобы проверить подпись S, созданную А под сообщением M, любой пользователь выполняет следующие шаги: 1) получает открытый ключ А: (р, а, у); 2)проверяет, что 1 ≤ r ≤ р - 1, и если это не выполняется, то отвергает ЦП; 3) рассчитывает V1 = yrrsmod(р); 4) рассчитывает V2 = аm mod(р); 5) принимает ЦП как правильную при условии, что V1 = V2
Стойкость ЦП на основе КС Эль-Гамаля 1) Злоумышленник может попытаться подделать подпись к своему сообщению М следующим образом: сгенерировать случайное число к, вычислить r = аkmod(р), а затем попытаться найти s = k-l(m - xr)mod(p - l). Однако для выполнения последней операции ему необходимо знать a, которое при соответствующем выборе параметров ЦП вычислить невозможно.
3) Стоит отметить, что если не выполнен шаг 2 алгоритма верификации ЦП, то злоумышленник может правильно подписать любое сообщение по своему выбору при условии, что в его распоряжении имеется какое-либо другое сообщение с правильной ЦП. Таким образом, при выборе модуля р, который в двоичном представлении имеет длину порядка 768 бит, обеспечивается хорошая стойкость ЦП, а для обеспечения долговременной стойкости целесообразно увеличить ее до 1024 бит.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|