Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

За пределами человеческих чувств 14 глава

К сожалению, его допущение, что все элементы соединяются друг с другом в простейших возможных пропорциях, оправдывалось не всегда. К примеру, согласно этому допущению формула воды – HO, а не более затейливая известная нам ныне H2O. Следовательно, когда он рассчитывал относительную массу атома кислорода к водороду, результат получился вполовину меньший, чем должен быть. Дальтон вполне понимал эту степень неопределенности и в отношении воды признавал и формулу HO2, и H2O как допустимые возможности. Рассчитать относительные массы было бы гораздо труднее, если б у обычных веществ были формулы вроде H37O22, но так, к счастью, дело не обстоит.

Дальтон знал, что оценки его приблизительны, и им необходима опора на данные о множестве веществ – тогда удастся выявить нестыковки, а они в свою очередь проявят ошибки в найденных формулах. Эта трудность мучила химиков еще лет пятьдесят, но то, что на прояснение деталей ушло время, не уменьшает значимости этой работы для химии, ибо Дальтонова версия атомизма наконец оказалась практически осмысленной: ее можно было увязать с лабораторными показателями. Более того, основываясь на работе Лавуазье, Дальтон применил свои соображения для разработки первого количественного языка химии – нового способа понимать проводимые химиками эксперименты в понятиях обмена атомами между молекулами. В современной версии, к примеру, описывая получение воды из кислорода и водорода, химик (или школьник) напишет: 2H2 + O2 → 2H2O.

Новый язык химии революционизировал способность химиков понимать наблюдаемое и измеряемое в химических реакциях и рассуждать о них, и представления Дальтона сделались с тех пор центральными в химической теории. Работа Дальтона принесла ему мировую славу, и, хотя он скрывался от публичных почестей, все же принимал их, включая и членство в Королевском обществе, коим его наделили невзирая на его яростные возражения. Когда в 1844 году он умер, погребение, которое, он надеялся, будет скромным, происходило в присутствии более сорока тысяч скорбящих.

Усилиями Дальтона человеческое мышление о природе вещества перешло от теорий, восходящих к древнему наследию мистики, к началам понимания материи на уровне далеко за пределами наших чувств. Но если атом каждого элемента имеет определенную массу, как это свойство связано с наблюдаемыми химическими и физическими особенностями веществ? Это следующий этап эстафеты и, разумеется, последний глубинный вопрос о химии, на который можно ответить, не выходя за пределы Ньютоновой науки. Будут и дальнейшие прозрения, но с ними придется подождать до квантовой революции в физике.

 

* * *

 

Стивен Хокинг, прожив не один десяток лет парализованным болезнью, которая должна была бы угробить его за считанные годы, однажды сказал мне, что считает упрямство своей величайшей добродетелью, – и, вероятно, он прав. Хоть это качество иногда затрудняет работу с ним, он знает, что именно его упрямство поддерживает в нем жизнь и дает силу продолжать исследования.

Готовые теории науки могут показаться самоочевидными – когда они уже сформулированы, но в борьбе за их создание обычно можно победить лишь потрясающей настойчивостью. Психологи называют это качество «выдержкой», свойством, связанным с упорством и упрямством, но и со страстью тоже, а такие качества мы на страницах этой книги уже встречали. «Склонность стремиться к достижению долгосрочных целей с устойчивым во времени интересом и усилием»[257]– таково определение выдержки, и психологи, что не удивительно, обнаружили: она связана с успехом во всем – от супружеской жизни до службы в армейских подразделениях особого назначения. Быть может, поэтому персонажи, с которыми мы успели познакомиться, – своевольные, даже высокомерные. Таковы многие новаторы. Им приходится.

Наш следующий пионер науки, Дмитрий Иванович Менделеев (1834–1907)[258], русский химик, который, говорят, был склонен к истерикам и припадкам ярости (и стриг волосы и бороду не чаще раза в год), вполне вписывается в пантеон упрямых ослов. Такова была сила его личности, что супруга Менделеева постепенно поняла: стоит жить подальше от него, в их загородном доме, – кроме тех случаев, когда он заявлялся туда, и тогда она брала детей и перебиралась в их городское жилье.

Менделеев, как и Хокинг, – выживший. Ближе к двадцати годам он попал в больницу с туберкулезом, но не просто выжил – он нашел поблизости лабораторию и, пока выздоравливал, проводил там целые дни за экспериментами. Он выучился на преподавателя, но по окончании Главного Педагогического института, по настоянию врача, отправился в Крым. Шел 1855 год, и Менделеев, прибыв в Симферополь и дожидаясь приема у великого Пирогова, устроился в местную гимназию, но та из-за войны почти не работала. Вернувшись с юга, Менделеев стал приват-доцентом Петербургского университета, а потом и профессором.

 

Дмитрий Иванович Менделеев

 

То, что Менделеев стал химиком и вообще получил образование, – заслуга его матери. Он родился в небогатой семье в Западной Сибири, младшим из четырнадцати или семнадцати детей – сведения разнятся. В школе учился неважно, но любил самопальные эксперименты. Мать Менделеева верила в силу его ума и, когда ему исполнилось пятнадцать и умер его отец, она отправилась с ним в путь – подобрать сыну университет.

То было странствие в тысячу четыреста миль, на перекладных, но в итоге Менделеев начал учебу в Главном Педагогическом институте в Петербурге, с небольшой стипендией – директор института был старым другом его покойного отца. Мать тоже вскоре скончалась, а Менделеев посвятил ее памяти научный труд, процитировав ее последние слова, которые он назвал «священными»: «избегать […] самообольщения, настаивать в труде, а не в словах, и терпеливо искать божескую или научную правду»[259]. Менделеев, как и многие великие ученые до него, прожил по этому завету всю жизнь.

В некотором смысле Менделееву повезло родиться тогда, когда он родился. Практически все великие открытия и изобретения возникли из сочетания интеллектуального прозрения и счастливых обстоятельств. Волею судеб научная работа Эйнштейна началась вскоре после того, как была сформулирована современная теория электромагнетизма, предполагавшая, что скорость света постоянна, а именно эта мысль стала сутью теории относительности. Стиву Джобсу [Джобзу] тоже повезло – его карьера стартовала, когда техническое развитие достигло точки, в которой можно было разработать удобный персональный компьютер. С другой стороны, армяноамериканскому изобретателю и предпринимателю Лютеру Симиджяну принадлежит множество патентов, однако лучшая мысль пришла ему в голову с опережением лет в десять: в 1960 году он придумал автоматическую банковскую машину, которую назвал банкографом[260]. Убедил Банк Нью-Йорка установить несколько штук, но клиенты боялись класть через эти машины деньги, и пользовались ими только проститутки и аферисты, избегавшие личного общения с банковскими служащими. Через десятилетие ситуация изменилась, банкоматы прижились, но в другом техническом воплощении.

В случае Менделеева время оказалось на его стороне. Он достиг зрелости, когда химия была готова к рывку – представление о том, что химические элементы можно организовать в семейства, в 1860-х витало в воздухе по всей Европе. Классификация фтора, хлора и брома как «галогенов» Йенсом Якобом Берцелиусом в 1842 году, к примеру, не прошла незамеченной; эти элементы словно родственники: все три – чрезвычайно едкие газы, усмиряемые соединением с натрием, в результате которого образуются безобидные кристаллы, похожие на поваренную соль. (Поваренная соль – хлорид натрия.) Нетрудно было усмотреть общее и среди щелочных металлов лития, натрия и калия. Все три – блестящие, мягкие и очень активные. Члены семейства щелочных металлов до того похожи друг на друга, что, если заменить в поваренной соли натрий на калий, получится настолько похожее вещество, что его можно применять как заменитель поваренной соли.

Химики, вдохновленные схемой Карла Линнея, предложенной для биологических организмов, пытались разработать понятную систему родства и в своей дисциплине и объяснить с ее помощью взаимоотношения между элементами. Но не все элементы группировались очевидным манером, неизвестно было и то, как они соотносятся друг с другом и какие свойства атомов отвечают за фамильное сходство. Эти вопросы занимали мыслителей по всей Европе. В общее дело включился даже некий сахаровар – ну или, по крайней мере, работавший в сахароварне химик. Но хотя несколько ученых и стучали в дверь ответа, лишь один – Менделеев – в эту дверь вломился.

Вам может показаться, что, раз мысль об упорядочивании элементов «витала в воздухе», значит, человек, которому такая систематизация удается, достоин искреннего признания, однако есть вероятность, что в величайшие гении этого человека вы не запишете; Менделеев меж тем – именно величайший гений. Так что же ставит его в один ряд с исполинами вроде Бойля, Дальтона и Лавуазье?

«Периодическая таблица», составленная Менделеевым, – не химическая версия полевого путеводителя по птицам, а, скорее, ответ химиков законам Ньютона – или, во всяком случае, самое близкое к волшебству достижение, на какое химики могли надеяться. Это не просто список семейств элементов – это настоящая спиритическая доска, позволяющая химикам понимать и предсказывать свойства любого элемента, включая и еще не известные.

Оглядываясь на это открытие, легко приписать прорыв Менделеева его способности задавать правильные вопросы вовремя, или его трудовой этике, страсти, упрямству и крайней самоуверенности. Но, как это часто бывает с открытиями и нововведениями – и зачастую в нашей с вами жизни, – помимо интеллектуальных свойств имеет значение счастливая случайность или, по крайней мере, сторонние обстоятельства, позволившие этим качествам добиться успеха. В случае с Менделеевым эту роль сыграло его решение написать учебник по химии.

В 1866 году, после того, как Менделеева назначили профессором химии в Петербургском университете, в тридцать два года он решил составить учебник. Санкт-Петербург основал за полтора века до этого Петр Великий, и город к середине XIX века сделался одним из интеллектуальных центров Европы. Университет Петербурга был лучшим в России, но Россия отставала от остальной Европы, и Менделеев, изучив российскую химическую литературу, пришел к выводу, что приличного современного учебника, пригодного для преподавания, не имеется. И он взялся писать его. На эту работу ушли годы, но учебник в итоге был переведен на все основные мировые языки и применялся в университетах по всему свету многие десятилетия после его издания. Он был оригинальным, богатым на прибаутки, рассуждения и чудачества. То был труд любви, и стремление Менделеева написать наилучший учебник подтолкнуло его сосредоточиться на вопросах, которые и привели к его великому открытию.

Первая запинка на пути Менделеева к идеальному учебнику – как организовать материал. Менделеев решил поделить элементы и их соединения на группы, или семейства, согласно их свойствам. Выполнив сравнительно простую задачу – описав галогены и щелочные металлы, – он задался вопросом, о какой совокупности элементов писать дальше.

В случайном порядке? Или, может, сформулировать принцип, в согласии с которым установить порядок?

Менделеев сражался с этой задачей, вглядываясь в глубины обширного химического знания в поисках подсказок, как могут соотноситься друг с другом различные группы элементов. Однажды в субботу он настолько ушел в работу, что провел без сна всю ночь и утро. Так ничего и не добился, но что-то подтолкнуло его записать названия элементов из групп кислорода, азота и галогенов, итого двенадцать элементов, на обороте конверта – в порядке увеличения их атомных масс.

И тут вдруг он заметил поразительную закономерность: список начинался с азота, кислорода и фтора – легчайших членов своих групп, а затем продолжился вторыми по массе, тоже по порядку, и так далее. Список, иными словами, сложился повторяющимся, или «периодическим», узором. И лишь два элемента этой закономерности не поддерживали.

Менделеев сделал свое открытие еще отчетливее, разместив группы элементов в ряд, а ряды друг над другом, и получилась таблица. (Ныне мы записываем группы колонками.) Правда ли есть в этом что-то? А если эти двенадцать элементов и впрямь образуют осмысленную последовательность, впишутся ли в эту схему остальные известные в то время пятьдесят один?

Менделеев с друзьями любил раскладывать карточные пасьянсы – располагать игральные карты в определенном порядке. Из карт получалась таблица, которая, как он впоследствии вспоминал, выглядит очень похоже на ту, из двенадцати элементов, которую он в тот день изобразил. Решив записать названия и атомные массы всех известных элементов на карты и попытаться составить из них таблицу, он разложил, по его словам, «химический пасьянс». Принялся перекладывать карты так и эдак, пытаясь разместить их в осмысленном порядке.

В подходе Менделеева был серьезный изъян. Во-первых, было неясно, к каким группам некоторые элементы принадлежат. Свойства других к тому времени оставались непонятыми. Были и разногласия в отношении атомных масс одних элементов, а массы, присвоенные другим элементам, – попросту ошибочны. А во-вторых, что важнее, были и элементы, которые еще предстояло открыть, и из-за этого предположенная закономерность давала сбой.

Все эти трудности усложняли Менделееву задачу, но было и еще кое-что – нечто более тонкое: не хватало оснований считать, что схема, основанная на атомных массах, – непременно рабочая, поскольку никто в то время не понимал, какой аспект химических свойств связан с атомной массой. (Теперь-то мы знаем, что это число протонов и нейтронов в атомном ядре, и что масса, приходящаяся на нейтрон, никак на химические свойства вещества, состоящего из тех или иных атомов, не влияет.) И вот тут-то упрямство Менделеева поддержало его страсть достичь цели: он продолжил сражаться, основываясь исключительно на интуиции и вере.

Работа Менделеева куда буквальнее многих других показывает: научный процесс – решение головоломок. Но она еще и иллюстрирует важное отличие: в отличие от головоломки, купленной в магазине, кусочки мозаики, которую складывал Менделеев, не стыковались друг с дружкой. Частично в науке и полностью – в новаторстве временами бывает важно не обращать внимание на особенности дела, вроде бы подсказывающие, что ваш подход никак не может быть состоятельным, и верить, что какой-нибудь обходной путь все же найдется, или что эти особенности не будут иметь значения. Менделеев, благодаря поразительной одаренности и чрезвычайной настойчивости, собрал свою картинку, переделав одни части мозаики и выдумав с нуля другие.

Представлять достижение Менделеева в героическом свете задним-то числом просто – видимо, так оно и выглядит в моем описании. Пусть ваши взгляды отдают безумием, если они действенны – мы сотворим из вас героя. Но тут есть и оборотная сторона: за века накопилось множество безумных схем, оказавшихся в итоге ошибочными. Работающих систем гораздо меньше, чем неработающих. Ошибочные быстро забываются, а часы, дни и годы работы тех, кто в них верил, потрачены, как оказывается, впустую. И часто мы зовем поборников этих систем неудачниками и чокнутыми. Но героизм – это готовность рисковать, и потому героизм исследования, успешного или провального, – в риске, который берем на себя мы, ученые и новаторы, а это долгие часы и дни, месяцы или даже годы яростной интеллектуальной борьбы, коя может привести к плодотворному завершению и результату, а может и нет.

Менделееву уж точно пришлось покорпеть. Элементы не встали на свои места так, как ему хотелось, но он отказался смириться с недееспособностью своей системы. Напротив, он стоял на своем и заключил, что те, кто мерил атомные массы, ошиблись, – и он смело вычеркнул известные величины и вписал то значение, с которым элемент занимал правильное место в его системе.

Самый дерзкий его вывод возник в отношении пустых ячеек в таблице – элементов с отвечающими этому месту в системе свойствами не было известно. Менделеев не только не отказался от своих соображений и не попытался изменить организующий принцип, он упрямо настаивал, что пустые ячейки – это пока не открытые элементы. Он даже предсказал свойства этих новых элементов – атомную массу, физические свойства, с какими другими элементами они могут взаимодействовать и какие сложные вещества образовывать – исключительно на основании того, в какой части таблицы эта пустая ячейка возникла.

К примеру, существовал зазор рядом с алюминием. Менделеев вписал туда неведомый элемент экаалюминий и предсказал, что, когда химики откроют экаалюминий, это будет блестящий металл, хорошо проводящий тепло, с низкой температурой плавления и массой одного кубического сантиметра ровно 5,9 граммов. Через несколько лет французский химик по имени Поль-Эмиль Лекок де Буабодран открыл в образце руды элемент, в точности совпадавший с описанием, за исключением массы кубического сантиметра – 4,7 граммов. Менделеев тут же послал Лекоку письмо, в котором сообщил, что образец был явно неочищенный. Лекок повторил анализ с новым образцом и добился тщательной очистки. На сей раз все сошлось с предсказанием Менделеева – 5,9 граммов на кубический сантиметр. Лекок назвал элемент галлием, в честь латинского названия Франции – Галлия.

Менделеев обнародовал свою таблицу в 1869 году, сначала в «Журнале Русского химического общества»[261], а затем – в почтенном немецком издании[262], под названием «Периодическая закономерность химических элементов». Помимо галлия, таблица включала в себя еще несколько на ту пору неизвестных элементов – ныне это скандий, германий и технеций. Технеций радиоактивен и до того редок, что его открыли лишь в 1937 году, синтезировав в циклотроне, разновидности ускорителя элементарных частиц, через тридцать лет после смерти Менделеева.

 

 

Оригинальная периодическая таблица Менделеева, опубликованная в 1869 году, и ее современный вид

 

Нобелевскую премию по химии впервые дали в 1901 году, за шесть лет до кончины Менделеева. Он не получил Нобелевскую премию, и это величайший промах Нобелевского комитета, поскольку Периодическая система – главный организующий принцип современной химии, открытие, сделавшее возможным наше освоение науки о веществе, это венец двухтысячелетней работы, начатой в лабораториях бальзамировщиков и алхимиков.

Но все же Менделеев стал членом еще более элитарного клуба. В 1955 году ученые в Беркли выделили всего десяток с чем-то атомов нового элемента, тоже в циклотроне, и в 1963 году назвали его менделевием, в честь автора великого открытия. Нобелевскую премию вручили более чем восьми сотням людей, но лишь шестнадцать ученых увековечены в Периодической таблице. И Менделеев – один из них, со своим личным местом в своей же таблице, под номером 101, совсем рядом с эйнштейнием и коперницием.

 

Глава 9

Одушевленный мир

 

Хотя ученые еще с античных времен считали, что материальные предметы собраны из базовых составляющих, никто не подозревал, что это верно и для живых существ. И потому все, должно быть, страшно удивились, когда в 1664 году наш старый приятель Роберт Гук заточил перочинный ножик до состояния «острый как бритва», срезал тоненький кусочек с пробки, всмотрелся в него посредством самодельного микроскопа и стал первым человеком, увидевшим нечто, названное им «клетками»[263]. Это название он выбрал, потому что они ему напомнили кельи[264], в которых жили монахи в монастырях.

Можно считать клетки атомами жизни, но они сложнее атомов и – что, вероятно, еще сильнее потрясло их первооткрывателей – живые сами по себе. Клетка – кипучая живая фабрика, потребляющая энергию и сырье и производящая из них разнообразные продукты, преимущественно белки, решающие практически все важнейшие биологические задачи. Чтобы выполнять функции клетки, необходимы обширные знания, и, хотя у клеток нет мозгов, они «знают» много чего – как создавать белки и другие материалы, необходимые нам для роста и деятельности, а что важнее всего – они знают, как воспроизводить себя самих.

Важнейший и исключительный продукт клетки – копия ее самой. Благодаря этой способности мы, люди, возникаем как единственная клетка и последовательным сорока с лишним кратным удвоением наконец обрастаем тридцатью триллионами клеток[265], а это в сто раз больше, чем звезд в галактике Млечный Путь. Невероятное чудо: сумма деятельности наших клеток, взаимодействия целой галактики существ, не способных к мышлению, составляет целое, которое есть мы. Не менее поразительно и то, что мы смогли разобраться, как это все работает, – подобно компьютерам, которым это никто не поручал, мы проанализировали собственное устройство. Таково чудо биологии.

Чудо это оказывается еще величественнее, если вспомнить, что мир биологии для нас по большей части незрим. Отчасти из-за миниатюрности клеток, отчасти из-за ошеломительного многообразия жизни. Если исключить бактерии и считать лишь живые организмы с клетками, у которых есть ядра, выйдет, по оценкам ученых, что на нашей планете – примерно десять миллионов биологических видов[266], из которых мы открыли и классифицировали около 1 %. Одних только муравьев 22 000 видов, а на каждого человека на Земле приходится от одного до десяти миллионов штук этих насекомых.

Всем нам знакома мешанина дворовых насекомых, но в одной лишь горсти плодородной почвы содержится больше видов существ, чем мы могли бы счесть, – сотни или даже тысячи беспозвоночных видов, несколько тысяч микроскопических круглых червей и десятки тысяч видов бактерий. Присутствие жизни на Земле столь вездесуще, что мы постоянно поглощаем организмы, которые, вероятно, предпочли бы не есть. Попробуйте приобрести арахисовое масло, в котором не содержится фрагментов насекомых, – не выйдет. Правительство понимает, что производство арахисового масла без содержания насекомых непрактично, и потому правилами допускается до десяти фрагментов насекомых на тридцать один грамм продукта[267]. Меж тем порция брокколи может содержать шестьдесят тлей и/или клещей, а в банке молотой корицы – четыре сотни фрагментов насекомых[268].

Неаппетитно это все, однако полезно помнить: даже наши тела – не без посторонних, поскольку любой из нас есть целая экосистема живых организмов. Ученые определили, к примеру, сорок четыре рода (групп видов) микроскопических организмов, обитающих на вашем предплечье и не менее 160 видов бактерий, населяющих человеческий кишечник[269]. Между пальцами на ногах? Сорок видов грибов. Вообще, если дать себе труд пересчитать их все, выяснится, что в наших телах клеток микробов гораздо больше, чем человеческих.

Каждая часть нашего тела – отдельная среда обитания, а существа, населяющие ваш кишечник или пространство между пальцами на ногах, имеют больше общего с организмами, населяющими симметричные части моего тела, нежели с живностью на вашем предплечье. В Университете Северной Каролины есть даже научный центр под названием «Проект биологического многообразия жизни в пупе», который занимается изучением жизни, существующей в этом темном, заповедном краю. А есть еще проклятые кожные клещи. Родственники лесных клещей, пауков и скорпионов, эти твари менее трети миллиметра размером и живут они у вас на лице – в волосяных луковицах и железах, связанных с ними, в основном, рядом с носом, ресницами и бровями, и сосут ваши сочные клетки. Но не тревожьтесь, от них обыкновенно нет никаких болезнетворных последствий, а если вы оптимист, можете надеяться, что относитесь к той половине взрослого населения, на которой они не живут.

С учетом сложности жизни, многообразия ее размеров, форм и сред обитания, а также нашей естественной склонности не верить, что мы «всего лишь» результат действия физических законов, неудивительно, что биология как наука отстала в развитии от физики и химии. Подобно другим дисциплинам, биологии для движения вперед пришлось преодолеть свойственную человеку привычку считать себя особенным и убежденность, что миром правят боги и/ или волшебство. И, как и в других науках, это означало преодоление богоцентрического мировоззрения Католической церкви и человекоцентрического – Аристотеля.

Аристотель сам был увлеченным биологом[270]– почти четверть сохранившихся его рукописей относится к этой дисциплине. Аристотелева физика считает нашу планету физическим центром Вселенной, а его биология имеет более личное свойство и воспевает человека – в особенности мужчину.

Аристотель считал, что божественный разум создал всех живых существ, отличающихся от неодушевленных тем, что у них есть особое качество, или суть, коя покидает организм или же прекращает быть, когда живое умирает. Среди всех образчиков жизни, полагал Аристотель, люди – высшая точка. В этом отношении Аристотель был настолько непримирим, что, описывая особенность того или иного вида, отличающуюся от соответствующей особенности человека, называл ее уродством. Аналогично он рассматривал женщину как изуродованного или же ущербного мужчину.

Распад этой традиционной, но ошибочной системы верований дал рождение современной биологии. Одна из первых давних побед над этими убеждениями – отказ от принципа Аристотелевой биологии под названием «самозарождение», согласно которому живые существа якобы возникают из неживой материи – из пыли, например. Примерно в то же время, доказав, что даже простейшие формы жизни имеют те же органы, что и мы, а растения и животные, как и мы, состоят из клеток, новые методы микроскопического наблюдения поставили под сомнение старый способ мышления. Но биология не могла по-настоящему вызреть как наука, пока не был открыт ее главный организующий принцип.

У физики, изучающей взаимодействие между предметами, есть законы движения; у химии, науки о взаимодействиях между веществами, есть периодический закон. Биология разбирается в том, как функционируют и взаимодействуют друг с другом биологические виды, и для достижения успехов ей нужно было понять, почему у биологических видов именно такие свойства, – требовалось объяснение, отличное от традиционного «потому что Боженька их такими сделал». Это понимание пришло вместе с Дарвиновой теорией эволюции, основанной на естественном отборе.

 

* * *

 

Наблюдатели за жизнью существовали задолго до возникновения биологии. В морские и сухопутные организмы вглядывались земледельцы, рыбари, врачи и философы. Но биология – это больше, чем подробности из каталогов растений или справочников по птицам: наука не сидит себе в углу, описывая мир, – она вскакивает с места и выкрикивает объяснения, что именно она видит. Но объяснить – гораздо сложнее, чем описать. И потому, до развития научного метода, биология, как и другие науки, полнилась объяснениями и соображениями с виду разумными, но – ошибочными.

Возьмем, к примеру, лягушек в древнем Египте. Каждую весну после разлития Нила по прилежащим полям оставался плодородный ил, и земли, укрытые им, стараниями земледельцев кормили народ. Илистая почва приносила и еще один урожай, невозможный на землях посуше – лягушек. Шумные создания появлялись столь внезапно, и было их так много, что, казалось, они возникают прямо из ила – и именно в такое их происхождение верили древние египтяне.

Египетская теория – не плод небрежного мышления. Пристальные наблюдатели почти всю историю человечества приходили к точно такому же выводу. Мясники замечали, что черви «возникали» на мясе, землепашцы обнаруживали, что мыши «появлялись» в корзинах, где хранилась пшеница. В XVII веке химик Ян Баптиста ван Гельмонт [Хельмонт] даже предложил рецепт создания мышей из подручных материалов: поместите несколько зерен пшеницы в горшок, добавьте грязное исподнее и подождите три недели. Рецепт, как сообщается, часто оказывался действенным.

Теория в основании предложенного ван Гельмонтом метода – самозарождение, то есть убежденность, что простые живые организмы могут самопроизвольно возникать из определенных неодушевленных субстратов. Со времен древнего Египта, а, возможно, и прежде, люди считали, что во всех живых существах есть некая жизненная сила или энергия[271]. Постепенно побочным продуктом подобных взглядов стала уверенность, что жизненной энергией можно как-то пропитать неодушевленную материю и так сотворить новую жизнь, а когда это мировоззрение Аристотель преобразовал в складную теорию, она приобрела особый вес. Но так же, как некоторые ключевые наблюдения и эксперименты XVII века привели к концу Аристотелеву физику, вышло и с подъемом науки, нанесшим мощный удар по воззрениям Аристотеля на биологию. Один из наиболее памятных ударов – опыт самозарождения, проведенный итальянским врачом Франческо Реди в 1668 году. То был один из первых подлинно научных биологических экспериментов.

Реди избрал простой метод. Он добыл несколько широкогорлых горшков и поместил в них образцы свежего змеиного мяса, рыбы и телятины. Затем оставил некоторые горшки открытыми, а другие затянул чем-то вроде марли или бумаги. Реди предположил, что, если самозарождение действительно произойдет, мухи и личинки должны появиться на мясе во всех трех случаях. Но если личинки возникают, как и предполагал Реди, из крошечных незримых яиц, отложенных мухами, они должны появиться лишь на мясе в незакрытых емкостях, а в тех, что запечатаны, – нет. Он также предсказал, что личинки появятся на марле, которой накрыты оставшиеся емкости: голодные мухи постараются подобраться к мясу как можно ближе. В точности так и вышло.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...