Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Воздушные линии электропередачи




ОТЧЕТ О ПРАКТИКЕ

 

Конденсационные электростанции (КЭС)

 

Студент, гр. ФЭ11-06Б __________ А. Ю. Княженцев

 

 

Преподаватель __________ Т. А. Боякова

 

 

Красноярск 2012

РЕФЕРАТ

Отчет о практике по теме «Конденсационные электростанции)» содержит 23 страницы текстового документа, 2 рисунка,19 используемых источников.

Объект практики – изучение принципа работы конденсационной электростанции.

Цель практики:

1) Нахождение необходимых источников литературы;

2) Ознакомление с найденными источниками информации;

По окончанию учебной практики была найдена литература по принципу работы конденсационной электростанции, в итоге был произведён отбор информации и получены необходимые теоретические знания по своей теме.


 

СОДЕРЖАНИЕ

1. Введение  
2. История  
3. Принцип работы  
3.1.Градирня  
3.1.1. Характеристики  
3.1.2. Классификация  
3.2. Линия электропередач  
3.2.1. Воздушные линии электропередачи  
3.2.1.1. Состав воздушных линий электропередач  
3.2.1.2. Классификация ВЛ  
3.2.1.3.Основные элементы ВЛ  
3.2.2. Кабельные линии электропередачи  
3.2.2.1. Классификация КЛ  
3.2.3 Тип изоляции ЛЭП  
3.3 Деаэратор  
3.3.1. Назначение  
4. Основные системы КЭС  
4.1. Котельная установка  
4.2. Паротурбинная установка  
4.3. Топливное хозяйство  
4.4. Система золошлакоудаления  
4.5. Электрическая часть  
4.6. Система технического водоснабжения  
4.7. Система химводоподготовки  
5. Воздействие КЭС на окружающую среду  
5.1. Воздействие на атмосферу  
5.2. Воздействие на гидросферу  
5.3. Воздействие на литосферу  
6. Каширская КЭС  
6.1. История  
6.2. Эксплуатация с 1920-х до 1941 года  
6.3. Эксплуатация с 1942 года до 1990-х  
6.4. Модернизация 2007—2008 года  
7. Электрогорская ГРЭС-3  
7.1. История и Деятельность  
8. Красноярская ГРЭС-2  
8.1. Ограничения по мощности  
8.2. Основные характеристики  
8.3. Характеристики оборудования  
8.4. История создания  
Список литературы  

 

 

ВВЕДЕНИЕ

Конденсационная электростанция (КЭС) — тепловая электростанция, производящая только электрическую энергию, своим названием этот тип электростанций обязан особенностям принципа работы. Исторически получила наименование «ГРЭС» — государственная районная электростанция.

С течением времени термин «ГРЭС» потерял свой первоначальный смысл («районная») и в современном понимании означает, как правило, конденсационную электростанцию (КЭС) большой мощности (тысячи МВт), работающую в объединённой энергосистеме наряду с другими крупными электростанциями.

Однако, следует учитывать, что не все станции, имеющие в своём названии аббревиатуру «ГРЭС», являются конденсационными, некоторые из них работают как теплоэлектроцентрали.

ИСТОРИЯ

Первая ГРЭС «Электропередача», сегодняшняя ГРЭС-3 им. Р. Э. Классона, сооружена под Москвой в г. Электрогорске в 1912—1914 гг. по инициативе инженера Р. Э. Классона. Основное топливо — торф, мощность — 15 МВт. В 1920-х годах планом ГОЭЛРО предусматривалось строительство нескольких тепловых электростанций, среди которых наиболее известна Каширская ГРЭС.

ПРИНЦИП РАБОТЫ

В котёл с помощью питательного насоса подводится питательная вода под большим давлением, топливо и атмосферный воздух для горения. В топке котла идёт процесс горения — химическая энергия топлива превращается в тепловую и лучистую энергию. Питательная вода протекает по трубной системе, расположенной внутри котла. Сгорающее топливо является мощным источником теплоты, передающейся питательной воде, которая нагревается до температуры кипения и испаряется. Получаемый пар в этом же котле перегревается сверх температуры кипения, примерно до 540°C с давлением 13-24 МПа и по одному или нескольким трубопроводам подаётся в паровую турбину.

Паровая турбина, электрогенератор и возбудитель составляют в целом турбоагрегат. В паровой турбине пар расширяется до очень низкого давления (примерно в 20 раз меньше атмосферного) и потенциальная энергия сжатого и нагретого до высокой температуры пара превращается в кинетическую энергию вращения ротора турбины. Турбина приводит в движение электрогенератор, преобразующий кинетическую энергию вращения ротора генератора в электрический ток. Электрогенератор состоит из статора, в электрических обмотках которого генерируется ток, и ротора, представляющего собой вращающийся электромагнит, питание которого осуществляется от возбудителя.

Конденсатор служит для конденсации пара, поступающего из турбины, и создания глубокого разрежения, благодаря которому и происходит расширение пара в турбине. Он создаёт вакуум на выходе из турбины, поэтому пар, поступив в турбину с высоким давлением, движется к конденсатору и расширяется, что обеспечивает превращение его потенциальной энергии в механическую работу.

Благодаря этой особенности технологического процесса конденсационные электростанции и получили своё название.

Схема КЭС на угле: 1 — градирня; 2 — циркуляционный насос; 3 — линия электропередачи; 4 — повышающий трансформатор; 5 — турбогенератор; 6 — цилиндр низкого давления паровой турбины; 7 — конденсатный насос; 8 — поверхностный конденсатор; 9 — цилиндр среднего давления паровой турбины; 10 — стопорный клапан; 11 — цилиндр высокого давления паровой турбины; 12 — деаэратор; 13 — регенеративный подогреватель; 14 — транспортёр топливоподачи; 15 — бункер угля; 16 — мельница угля; 17 — барабан котла; 18 — система шлакоудаления; 19 — пароперегреватель; 20 — дутьевой вентилятор; 21 — промежуточный пароперегреватель; 22 — воздухозаборник; 23 — экономайзер; 24 — регенеративный воздухоподогреватель; 25 — фильтр; 26 — дымосос; 27 — дымовая труба.

 
 
Рис.1. Схема КЭС на угле.

3.1 Градирня

Градирня (нем. gradieren - сгущать соляной раствор; первоначально градирни служили для добычи соли выпариванием) - устройство для охлаждения большого количества воды направленным потоком атмосферного воздуха. Иногда градирни называют также охладительными башнями.

В настоящее время градирни в основном применяются в системах оборотного водоснабжения для охлаждения теплообменных аппаратов (как правило, на тепловых электростанциях, ТЭЦ, АЭС).

В гражданском строительстве градирни используются при кондиционировании воздуха, например, для охлаждения конденсаторов холодильных установок, охлаждения аварийных электрогенераторов.

В промышленности градирни используются для охлаждения холодильных машин, машин-формовщиков пластических масс, при химической очистке веществ.

Процесс охлаждения происходит за счёт испарения части воды при стекании её тонкой плёнкой или каплями по специальному оросителю, вдоль которого в противоположном движению воды направлении подаётся поток воздуха (вентиляторные градирни), а в случае с эжекционными градирнями охлаждение происходит за счёт создаваемой среды, приближенной к условиям вакуума специальными форсунками (обеспечивающими площадь тепломассообмена, каждая — 450 м² на 1 м³ прокачиваемой жидкости, представляющие собой принцип двойного действия, охлаждая распыляемую жидкость не только снаружи, но и внутри) и особенностями конструкции.

При испарении 1 % воды, температура оставшейся массы понижается на 5,48 °C, а в случае с описанным эжекционным принципом охлаждения температура оставшейся массы понижается на 7,23 °C.

Как правило, градирни используют там, где нет возможности использовать для охлаждеия большие водоёмы (озёра, моря).

Простой и дешёвой альтернативой градирням являются брызгательные бассейны, где вода охлаждается простым разбрызгиванием.

Характеристики

Основной параметр градирни — величина плотности орошения — удельная величина расхода воды на 1 м² площади орошения.

Основные конструктивные параметры градирен определяются технико-экономическим расчётом в зависимости от объёма и температуры охлаждаемой воды и параметров атмосферы (температуры, влажности и т. д.) в месте установки.

Использование градирен в зимнее время, особенно в суровых климатических условиях, может быть опасно из-за вероятности обмерзания градирни. Происходит это чаще всего в том месте, где происходит соприкосновение морозного воздуха с небольшим количеством теплой воды. Для предотвращения обмерзания градирни и, соответственно, выхода её из строя следует обеспечивать равномерное распределение охлаждаемой воды по поверхности оросителя и следить за одинаковой плотностью орошения на отдельных участках градирни (только для градирен с оросителем).

Нагнетательные вентиляторы тоже часто подвергаются обледенению из-за неправильного использования градирни (для вентиляторных градирен). При использовании эжекционных градирен большая часть этих трудностей исчезает, потому что нет ни вентилятора, ни оросителя.

Классификация

В зависимости от типа оросителя, градирни бывают:

· плёночные;

· капельные;

· брызгальные;

· сухие.

По способу подачи воздуха:

· вентиляторные (тяга создаётся вентилятором);

· башенные (тяга создаётся при помощи высокой вытяжной башни);

· открытые (атмосферные), использующие силу ветра и естественную конвекцию при движении воздуха через ороситель.

· эжекционные, использующие естественный захват воздуха при распылении воды в специальных каналах.

По направлению течения сред (охлаждаемой воды и воздуха):

· с противотоком (наибольший температурный перепад, наибольшее аэродинамическое сопротивление);

· с перекрестным током (меньшее аэродинамическое сопротивление, меньше капельного уноса);

· с смешанным током (конструкция градирни содержит и противоток и перекрестный ток).

Вентиляторные градирни до последнего времени были наиболее эффективны с технической точки зрения, так как обеспечивали более глубокое и качественное охлаждение воды, выдерживая большие удельные тепловые нагрузки (однако требуют затрат электрической энергии для привода вентиляторов).

Эжекционные градирни выдерживают наибольшие гидравлические нагрузки и способны охлаждать воду с большим перепадом и с очень высоких температур (до 90 °С). Это обусловлено как отсутствием оросителя, так и большой суммарной площадью поверхности мелкодисперсных капель и высокими скоростями водо-воздушных потоков. Затраты электроэнергии на эксплуатацию систем оборотного водоснабжения с эжекционной градирней при грамотной организации схемы водоснабжения и автоматики не превышают затрат на типовые вентиляторные установки.

Линия электропередач

Линия электропередачи (ЛЭП) — один из компонентов электрической сети, система энергетического оборудования, предназначенная для передачи электроэнергии посредством электрического тока. Также электрическая линия в составе такой системы, выходящая за пределы электростанции или подстанции.

Различают воздушные и кабельные линии электропередачи.

По ЛЭП также передают информацию при помощи высокочастотных сигналов, в СНГ используется порядка 60 тысяч ВЧ-каналов по ЛЭП) и ВОЛС. Используются они для диспетчерского управления, передачи телеметрических данных, сигналов релейной защиты и противоаварийной автоматики.

Воздушные линии электропередачи

Воздушная линия электропередачи (ВЛ) — устройство, предназначенное для передачи или распределения электрической энергии по проводам, находящимся на открытом воздухе и прикреплённым с помощью траверс (кронштейнов), изоляторов и арматуры к опорам или другим сооружениям (мостам, путепроводам).

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...