Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Материальные уравнения электромагнитного поля в среде с дисперсией.




Содержание.

 

Введение........................................................................................................................3

§ 1. Материальные уравнения электромагнитного поля в среде с дисперсией.....5

§ 2. Закон дисперсии. Вектор объемной плотности поляризации.........................10

§ 3. Зависимость показателя преломления и поглощения от частоты..................12

Заключение.................................................................................................................15

Литература..................................................................................................................16


Введение.

 

Важнейшей характеристикой линейной распределенной системы является закон дисперсии, который связывает волновое число и частоту монохроматической волны. Он может быть записан как ,  или в неявной форме .

Когда плоская волна описывается одним (вообще говоря, интегродифференциальным) уравнением, закон дисперсии получают, отыскивая его решение в виде . В простейшем случае процесс распространения волны описывается уравнением

.

При этом волновое число связано с частотой линейной зависимостью , или , где скорость распространения волны  есть постоянная величина. Однако уже при учете диссипативных процессов поведение волны описывается более сложными уравнениями. Закон дисперсии  также усложняется. Для звуковых волн в вязкой теплопроводящей среде и электромагнитных волн в среде с проводимостью справедливы следующие соотношения между волновым числом и частотой:

.

В более общих случаях от частоты могут сложным образом зависеть действительная и мнимая части волнового числа:

.

Действительная часть характеризует зависимость от частоты фазовой скорости распространения волны , а мнимая часть — зависимость коэффициента затухания волны от частоты.

Во многих случаях волновой процесс удобно описывать не одним уравнением типа волнового, а системой связанных интегродифференциальных уравнений . Здесь  — матричный оператор, действующий на вектор-столбец .В качестве , например, для акустических волн может служить совокупность переменных  (колебательная скорость, приращения плотности, давления, температуры), а для электромагнитных волн — компоненты векторов напряженностей электрического и магнитного полей, электрического смещения и магнитной индукции. В этом случае формальная схема отыскания закона дисперсии такова. Ищем решение системы в виде :

,

Решение будет нетривиальным, только если . Отсюда получаются искомые зависимости . Наличие у дисперсионного уравнения нескольких корней  означает, что система может описывать несколько типов собственных волн (мод) среды.

Частотная дисперсия приводит к изменению закономерностей распространения немонохроматических волн. Действительно, различные спектральные компоненты обладают в диспергирующей среде отличающимися скоростями и коэффициентами затухания:

.

В силу дисперсии фазовой скорости в процессе распространения изменяются фазовые соотношения между спектральными компонентами. Следовательно, изменяется результат их интерференции: форма немонохроматической волны искажается. Дисперсия коэффициента поглощения  приводит к трансформации частотного спектра волны  и дополнительному искажению формы импульса.


Материальные уравнения электромагнитного поля в среде с дисперсией.

 

Дисперсионные эффекты часто проявляются при распространении электромагнитных волн. Покажем, как видоизменяются исходные уравнения при учете этих свойств. Система уравнений Максвелла сохраняет свой вид. Свойства среды должны быть учтены в материальных уравнениях:

.

Для статических и медленно изменяющихся полей можно написать

,

где  — константы, т. е. значения  и  в некоторой точке среды и в некоторый момент времени определяются значениями  и  в той же точке и в тот же момент времени.

При быстром изменении поля вследствие инерции внутренних движений и наличия пространственной микроструктуры среды наблюдается зависимость поляризации от поля, действующего в других точках и в другие моменты времени. При этом нужно иметь в виду, что в силу условия причинности поляризация и, следовательно, индукция зависят от полей, действовавших только в предыдущие моменты времени.

Сказанное можно записать математически, представляя материальные уравнения в общей интегральной форме:

,                                        (1.1)

,                                        (1.2)

.                                             (1.3)

По дважды встречающимся индексам здесь и везде в дальнейшем предполагается суммирование.

Выражения (1.1) — (1.3) представляют собой наиболее общую функциональную форму записи материальных уравнений для линейной среды. В этой записи учтена возможность проявления нелокальности, запаздывания и анизотропных свойств среды.

В частном случае, если среда однородна в пространстве и не изменяет со временем своих свойств, материальные характеристики , ,  должны зависеть лишь от разностей координат  и времени . Тогда

,                                       (1.4)

,                                      (1.5)

.                                       (1.6)

Связь между электрическим смещением и магнитной индукцией, полями и поляризациями среды определяется соотношениями

.                                                       (1.7)

Поэтому материальные уравнения можно записать также в виде

,                                      (1.8)

где  — тензор восприимчивости среды. Аналогичное выражение можно записать для .

Для проведения дальнейшего анализа удобно разложить  по плоским волнам:

.

После обычного перехода в фурье-представление в выражениях для  и  получаем простую зависимость

,                                                           (1.9)

,                                                           (1.9)

где

.                          (1.10)

Видно, что компоненты тензора диэлектрической проницаемости зависят в общем случае от частоты и от волнового вектора волны.

Аналогичный вывод можно сделать для магнитной проницаемости  и проводимости .

Таким образом, дисперсия при распространении электромагнитных волн может проявляться двояким образом — как частотная (за счет зависимости , ,  от частоты) и как пространственная (за счет зависимости этих же параметров от волнового вектора ). Частотная дисперсия существенна, если частота электромагнитных волн близка к собственным частотам колебаний в среде. Пространственная же дисперсия становится заметной, когда длина волны сравнима с некоторыми характерными размерами.

Для электромагнитных волн в большинстве случаев, даже в оптическом диапазоне, характерный размер  (где  — длина волны в среде: ) и пространственной дисперсией можно пренебречь. Однако в магнитоактивной плазме существуют области резонанса, в которых  и параметр  становится значительным уже в радиодиапазоне. Кроме того, при полном пренебрежении величинами, содержащими малое отношение , не учитываются некоторые явления, возникающие при распространении электромагнитных волн в различных средах. Так, учет пространственной дисперсии в плазме позволяет объяснить появление бегущих плазменных волн. Пространственная дисперсия является главной причиной (а не поправкой), вызывающей появление естественной оптической активности и оптической анизотропии кубических кристаллов. Если не интересоваться этими специальными случаями, то при рассмотрении частотной дисперсии пространственной дисперсией можно пренебречь.

При учете только частотной дисперсии материальное уравнение (1.9) имеет вид

.                                                              (1.11)

В отличие от (1.9) здесь взяты не компоненты плоских волн поля , а лишь временные гармоники. Диэлектрическая проницаемость  для волны с частотой  — это тензор, который в случае изотропной среды обращается в скаляр:

                                                              (1.12)

(напомним, что  — действительная величина). Из (1.12) следует, что функция  является комплексной:

,                                                              (1.13)

,                   (1.14)

т.е.  является четной функцией, а  — нечетной. Все сказанное справедливо также для :

.                                                                 (1.15)

Если в недиспергирующей среде диэлектрическая проницаемость — чисто реактивный параметр, а проводимость — чисто активный, то в среде с дисперсией это различие утрачивается. С увеличением частоты до значений, близких к собственным частотам среды, различие в свойствах диэлектриков и проводников постепенно исчезает. Так, наличие у среды мнимой части диэлектрической проницаемости с макроскопической точки зрения неотличимо от существования проводимости — и то и другое приводит к выделению тепла. Поэтому электрические свойства вещества можно характеризовать одной величиной — комплексной диэлектрической проницаемостью

,                                                                         (1.16)

где .

Можно установить предельный вид диэлектрической проницаемости при больших частотах. В пределе при  имеем

,

и диэлектрическая проницаемость , определяемая выражениями (1.6), (1.12), стремится к единице при .

Это же свойство диэлектрической проницаемости следует и из простого физического рассмотрения. При , когда частота волны велика по сравнению с собственными частотами колебаний электронов в атомах вещества, электроны можно считать свободными. Уравнение движения свободного электрона под действием гармонического поля  и решение этого Уравнения имеют вид

.

Здесь  — масса и заряд электрона. Мы не учитываем силу, действующую на заряд со стороны магнитного поля, так как рассматривается нерелятивистский случай (). Поляризация среды (дипольный момент единицы объема, содержащей  электронов) равна

.

Отсюда  и

.                                                                   (1.17)

При  мы получаем из (1.17) прежний результат:  и . Область применимости формулы (1.17) для сред, в которых нет свободных электронов, лежит в диапазоне далекой ультрафиолетовой области для самых легких элементов.

С учетом (1.16) уравнения Максвелла для комплексных амплитуд примут вид

,                                          (1.18)

.                                                       (1.18)

Поясним вывод уравнения . Из уравнения непрерывности при гармонической зависимости от времени следует, что

.

Подставляя это соотношение в уравнение Максвелла , запишем его в форме

.

Учитывая определение , получим уравнение .

Таким образом, для высокочастотных монохроматических полей вместо диэлектрической проницаемости и проводимости удобно ввести комплексную диэлектрическую проницаемость, объединяющую оба эти понятия. Физически это означает, что ток в среде для высокочастотных полей нецелесообразно рассматривать как сумму тока проводимости и тока смещения. Вместо этого вводится полный ток

,                                                                                    (1.19)

где  — комплексный вектор поляризации среды.


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...