Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Выбор и обоснование метода решения задачи




 

Метод решения задачи состоит в следующем. Определяем выходной параметр по формуле (1.1) со значениям параметров элементов, не учитывая производственные допуска, корреляцию, воздействия температуры и времени. Назовем полученное таким образом напряжение “идеальным” - Uвыхи. После чего задаемся допуском на выходной параметр DUвыхи, в пределах которого РЭУ считается исправным. Т.е. границы Uн и Uв фактически задаются нами, т.к. последние не указаны в задании. В программе этот диапазон задается в процентах, и, в последующем, пересчитывается в абсолютные величины, по которым и производятся сравнения. При анализе решаемой задачи мы задавились допусками 10%, 30% и 50%.

При помощи ЭВМ моделируем n различных реализаций РЭУ с параметрами элементов, распределенных по нормальному закону. Затем пересчитываем значения параметров элементов при воздействии на них дестабилизирующих факторов (в данном случае температуры) и времени. При этом предполагаем, что температурный коэффициенты aR и aU, а также коэффициенты старения СR и СU распределены по нормальному закону, а температура окружающей среды Траб - по равномерному. Так как закон распределения температуры окружающей среды был неизвестен, и не было возможности попытаться подобрать закон распределения экспериментально, то была принята гипотеза о том, что температура распределена по равномерному закону, ибо эта модель на практике является предельным наихудшим случаем разброса параметра. Определяем выходной параметр по формуле (1.1) - это напряжение назовем “реальным”.

По первому способу, изложенному в подразделе 1.2, вероятность отсутствия параметрического отказа определим следующим образом:

 

Рпар (tзад) (Uн £ Uвыхр £ Uв) = , (2.1)

 

Где nиспр - число исправных РЭУ в момент времени tзад;

n - общее число смоделированных РЭУ;

Uн - нижняя граница исправной работы РЭУ Uн = Uвыхи - DUвыхи;

Uв - верхняя граница исправной работы РЭУ Uв = Uвыхи + DUвыхи.

По второму способу, изложенному в подразделе 1.2, вероятность отсутствия параметрического отказа определим следующим образом.

Пусть случайное число x, имеющее нормальное распределение с параметрами m = m (x) и s = s (x), уже получено. Тогда для получения случайного числа z, имеющего нормальное распределение с параметрами m = m (z) и s = s (z) и коррелированного с x, необходимо произвести смещение параметров m = m (z) и s = s (z) с учётом коэффициента парной корреляции, а затем воспользоваться подпрограммой формирования случайных нормально распределённых чисел с параметрами m = m (z/x) и s = s (z/x):

 

 (2.2)

 (2.3)

 

Определяем математическое ожидание выходного параметра М* (Uвыхр) и его среднеквадратичное отклонение по формулам s* (Uвыхр):

 

М* (Uвыхр) = , (2.4)

s* (Uвыхр) = . (2.5)

 


Для определения точности и надежности полученных по формулам (2.4) и (2.5) оценок строим доверительные интервалы:

 

Ig = {Mн; Мв} = . (2.6)

 

Так как мы воспользовались “правилом трех сигм”, то доверительный интервал гарантируется с вероятностью g=0,9973.

Определяем верхнюю и нижнюю допустимые границы Uвыхр:

 

Uн = Uвыхи - DUвыхи, (2.7)

Uв = Uвыхи + DUвыхи. (2.8)

 

Так как мы воспользовались гипотезой о нормальном распределении выходного параметра, то искомую вероятность отсутствия параметрического отказа Рпар (tзад) определим с помощью формулы:

 

Рпар (tзад) (Uн £ U £ Uв) =

= Ф  (2.9)

 

Где M* (Uвыхр/t=tзад) - математическое ожидание выходного параметра в момент времени t=tзад;

s* (Uвыхр/t=tзад) - среднеквадратичное отклонение выходного параметра в момент времени t=tзад [].

Графическая интерпретация формулы (2.9) приведена на рисунке (2.1).

 

 

 w (Uвых)

Рисунок 2.1 - Влияние процесса эксплуатации, температуры и разброса параметров элементов на распределение выходного параметра РЭУ

 

w (Uвых/t=0)

w (Uвых/t=tзад) S=Pпар (tзад)

UнUном Uв Uвых


Решение задачи на ЭВМ

 

Программа решения задачи оценки параметрической надежности написана на алгоритмическом языке Паскаль (листинг программы приведен в приложении А). В соответствии с алгоритмом решения задачи на ЭВМ, приведенным в графической части, наиболее сложными, с точки зрения программирования, при моделировании является генерация случайных чисел, распределенных по нормальному закону, а также нахождение нормальной функции распределения Ф (х).

В соответствии с [] формула получения случайных чисел, распределенных по нормальному закону с параметрами m и s следующая:

 

x = s× + m, (3.1)

 

где m - математическое ожидание;

s - среднеквадратичное отклонение;

ri - равномерно распределенное случайное число в диапазоне 0..1.

В написанной программе формула (3.1) реализована через функцию:

 

Function Generator (m: Real; s: Real): Real;

BEGIN

Delay (20);

x: =0;

FOR i: =1 TO 12 DO

BEGIN

k: =Random (1000) /1000;

x: =x+k;

END;

x: =x-6;

m: =m+s*x;

Generator: =m;

END;

 

Таким образом, введя Generator (m, s) получим случайное число, распределенное по нормальному закону с параметрами m = m и s = s.

Нормальная функция распределения Ф (x) в соответствии с [] определяется по формуле:

 

Ф (х) = , если х³0, (3.2)

 

Где p, ai - постоянные коэффициенты. Если x<0, то Ф (-х) = 1 - Ф (х).

Определение функции Ф (х) в соответствии с формулой (3.2) в программе реализовано следующим образом:

Function Fx (F: Real): Real;

CONST a1=0.3193815;

a2=-0.3565638;

a3=1.781478;

a4=-1.821256;

a5=1.330274;

p=0.2316419;

BEGIN

IF F>=0 THEN

BEGIN

w: =1-exp (-sqr (F) /2) * (1/sqrt (2*3.14)) * (

a1* (1/ (1+p*F)) +

a2* (1/ (1+p*F)) * (1/ (1+p*F)) +

a3* (1/ (1+p*F)) * (1/ (1+p*F)) * (1/ (1+p*F)) +

a4* (1/ (1+p*F)) * (1/ (1+p*F)) * (1/ (1+p*F)) * (1/ (1+p*F)) +

a5* (1/ (1+p*F)) * (1/ (1+p*F)) * (1/ (1+p*F)) * (1/ (1+p*F)) * (1/ (1+p*F)));

Fx: =w;

END

ELSE

BEGIN

F: =-F;

w: =1-exp (-sqr (F) /2) * (1/sqrt (2*3.14)) * (

a1* (1/ (1+p*F)) +

a2* (1/ (1+p*F)) * (1/ (1+p*F)) +

a3* (1/ (1+p*F)) * (1/ (1+p*F)) * (1/ (1+p*F)) +

a4* (1/ (1+p*F)) * (1/ (1+p*F)) * (1/ (1+p*F)) * (1/ (1+p*F)) +

a5* (1/ (1+p*F)) * (1/ (1+p*F)) * (1/ (1+p*F)) * (1/ (1+p*F)) * (1/ (1+p*F)));

Fx: =1-w;

END;

END;

 

Определение величины смещения параметров m = M (z) и s = s (z) с учётом коэффициента парной корреляции в соответствии с формулами (2.2) и (2.3) в программе реализовано следующим образом:

 

Procedure Corr (x1,mx,mz,sx,sz: real; Var mzx,szx: real);

Begin

rxz: =0.95;

mzx: =mz+rxz* (sz/sx) * (x1-mx);

szx: =sz*sqrt (1-sqr (rxz));

end;

 

Таким образом, введя Corr (x1,mx,mz,sx,sz,mzx,szx) получим случайное число, распределенное по нормальному закону с параметрами m = M (z/x) и s = s (z/x).

В структурной схеме алгоритма решения задачи, приведенного в графической части, выполнение выше названных функций представлено в виде типового процесса.

Используемые в программе основные переменные и константы приведены в таблице 3.1

 

Таблица 3.1 - Основные переменные и константы, используемые в программе

Переменная Назначение
SR1. SR4,SU1,SU2 Номинальные значения входных параметров
dR1. dR4,dU1,dU2 Производственный допуск на входные параметры
R1. R4,U1,U2 Нормально распределенные значения входных параметров
Uideal Номинальное (идеальное) значение выходного параметра
dUideal Допуск на выходной параметр
Uexit Значение выходного параметра n-смоделированного РЭУ
M1 [n]. M4 [n] Массивы, содержащие значения Uexit
temp Равномерно распределенное значение температуры
time Заданное время работы
n Номер текущего смоделированного РЭУ
num Число реализаций РЭУ
mo,mx,mz,mzx Математическое ожидание
s,sx,sz,szx Среднеквадратичное отклонение
rxz Коэффициент парной корреляции
Р1, Р2 Вероятности отсутствия параметрического отказа (2 способа)

 

Остальные переменные носят вспомогательный характер.


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...