Начальные условия и граничные условия.
Лекция 4. Вывод уравнения теплопроводности При построении математической модели распространения тепла в стержне сделаем следующие предположения: Рассмотрим часть стержня на отрезке [ х, х + ∆х ] (см. рис. 6) и воспользуемся законом сохранения количества тепла: Общее количество тепла на отрезке [ х, х + ∆х ] = полному количеству тепла, прошедшему через границы + полное количество тепла, образованного внутренними источниками.
Рис. 6
Общее количество тепла, которое необходимо сообщить участку стержня, чтобы повысить его температуру на ∆U, вычисляется по формуле: ∆Q= CρS∆x∆U, где С - удельная теплоемкость материала (= количеству тепла, которое нужно сообщить 1 кг вещества, чтобы поднять его температуру на 1°), S - площадь поперечного сечения. Количество тепла, прошедшее через левый конец участка стержня за время ∆t (тепловой поток) вычисляется по формуле: Q1 = -kSUx(x, t)∆t, где k - коэффициент теплопроводности материала (= количеству тепла, протекающего в секунду через стержень единичной длины и единичной площади поперечного сечения при разности температур на противоположных концах, равной 1°). В этой формуле особого пояснения требует знак минус. Дело в том, что поток считается положительным, если он направлен в сторону увеличения х, а это, в свою очередь, означает, что слева от точки х температура больше, чем справа, то есть Ux < 0. Следовательно, чтобы Q1 был положительным, в формуле стоит знак минус.
Аналогично, тепловой поток через правый конец участка стержня вычисляется по формуле: Q2 = -kSUx(x +∆x,t)∆t. ∆Q = Q1 - Q2 => CpS∆x∆U = kSUx(x + ∆х, t) ∆t - kSUx(x, t)∆t. Если это равенство поделить на S∆x∆t и устремить ∆х и ∆t к нулю, то будем иметь:
так как
Отсюда уравнение теплопроводности имеет вид Ut = a2Uxx, В случае, когда внутри стержня имеются источники тепла, непрерывно распределенные с плотностью q(x,t), получится неоднородное уравнение теплопроводности Ut = a2Uxx + f(x,t),
Начальные условия и граничные условия. Для уравнения теплопроводности задается только одно начальное условие U|t=0 = φ(х) (или в другой записи U(x,0) = φ(х)) и физически оно означает, что начальное распределение температуры стержня имеет вид φ(х). Для уравнений теплопроводности на плоскости или в пространстве начальное условие имеет такой же вид, только функция φ будет зависеть, соответственно, от двух или трех переменных. Граничные условия в случае уравнения теплопроводности имеют такой же вид, как и для волнового уравнения, но физический смысл их уже иной. Условия первого рода (5) означают, что на концах стержня задана температура. Если она не изменяется со временем, то g1(t) ≡ Т1 и g2(t) ≡ Т2, где Т1 и Т2 - постоянные. Если концы поддерживаются все время при нулевой температуре, то Т1= Т2 = 0 и условия будут однородными. Граничные условия второго рода (6) определяют тепловой поток на концах стержня. В частности, если g1(t) = g2(t) = 0, то условия становятся однородными. Физически они означают, что через концы не происходит теплообмен с внешней средой (эти условия еще называют условиями теплоизоляции концов). Наконец, граничные условия третьего рода (7) соответствуют случаю, когда через концы стержня происходит теплообмен с окружающей средой по закону Ньютона (напомним, что при выводе уравнения теплопроводности мы считали боковую поверхность теплоизолированной). Правда, в случае уравнения теплопроводности условия (7) записываются немного по-другому:
(14)
Физический закон теплообмена со средой (закон Ньютона) состоит в том, что поток тепла через единицу поверхности в единицу времени пропорционален разности температур тела и окружающей среды. Таким образом, для левого конца стержня он равен
Аналогично получается условие (14) на правом конце стержня, только постоянная λ2 может быть другой, так как, вообще говоря, среды, окружающие левый и правый конец, бывают разные. Граничные условия (14) являются более общими по сравнению с условиями первого и второго рода. Если предположить, что через какой-либо конец не происходит теплообмена со средой (то есть коэффициент теплообмена равен нулю), то получится условие второго рода. В другом случае предположим, что коэффициент теплообмена, например h1, очень большой. Перепишем условие (14) при х = 0 в виде Аналогично формулируются граничные условия и для большего числа переменных. Для задачи о распространении тепла в плоской пластине условие
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|