Лекция 1: общая характеристика исторических этапов развития радиотехники и радиоэлектроники
История радиотехники и впоследствии радиоэлектроники весьма показательна и является одним из блестящих примеров бурного развития научно-технического прогресса. Эту историю можно разбить на ряд характерных этапов. В каждом из них радиоэлектроника достигает своего известного развития, но в то же время появляется нечто новое, что является основой следующего этапа. Не смотря на огромные усилия нашего соотечественника, изобретателя радио Александра Степановича Попова по развитию отечественной радиотехники на этапе ее становления, все-таки основные поставки средств связи в Российскую Армию и Флот осуществлялись из-за рубежа. Предвидя огромные прибыли от поставок радиооборудования на Российский рынок, в Россию ринулись не только известные фирмы, но и обыкновенные проходимцы. Предлагали свою продукцию немцы, англичане, американцы, причем в большинстве случаев это были опытные образцы техники или даже лабораторные макеты. В борьбе за заказы часто использовались коррупционные схемы и жульнические приемы (Маркони, Кобхем, Баранов, Виленкин, Батюшков и др.[1]).
Искровые передатчики и кристаллические детекторы на этом этапе постепенно достигли технического совершенства. В конце этого периода, который приходился на конец первой Мировой войны, появились дуговые передатчики и машины высокой частоты. Казалось бы, все возможности радиотехники на этом этапе были исчерпаны и ее развитие должно было бы остановиться. Однако появляются новые приборы – электронные лампы.
Именно радиолампы внесли нечто принципиально новое, благодаря чему второй этап в развитии радиотехники характеризуется широким использованием электронных ламп, как в качестве детекторов и усилителей в приемниках, так и генераторов в передатчиках. Радиолампы усовершенствовали радиотелефонию. Благодаря им появились новые отрасли промышленности - радиовещание, телевидение, радиолокация, автоматика, телемеханика и вычислительная техника. Поэтому более узкое понятие радиотехника было заменено емким–радиоэлектроника. Большое значение в производстве отечественных радиоламп имело создание Нижегородской радиолаборатории в трудные первые годы советской власти. В разруху, голод, блокаду и гражданскую войну коллективу Нижегородской радиолаборатории во главе с М.А Бонч-Бруевичем удалось создать мощные радиолампы, не имевшие в то время аналогов за рубежом [2].
Технология радиоламп к концу Второй Мировой войны достигла совершенства. Когда реальная угроза применения ядерного оружия против СССР требовала от разработчиков радиоаппаратуры нового качества - радиационной стойкости разрабатываемых изделий, а установка радиотехнического оборудования в реактивные самолеты и межконтинентальные ракеты, в которых аппаратура подвергалась огромным перегрузкам, требовала особой надежности, появились радиолампы особого типа. Это были радиолампы, созданные на Новосибирском НПП "Восток". Это предприятие возникло в 1941 году, когда знаменитый Ленинградский завод "Светлана" был эвакуирован в Новосибирск и значился под номером N617. Уже в 1942 году план выпуска радиоламп этим заводом оценивался в 70млн. рублей. R концу 42 года планировалось, чтобы и по номенклатуре изделий завод N617 должен был соответствовать заводу N211("Светлана"), так как кроме выпуска приемных радиоламп, генераторных ламп и миниатюрных осветительных ламп, нужно было освоить производство мощных генераторных ламп, рентгеновских трубок и газовых приборов в пределах и по номенклатуре, обеспечивающей потребность страны в военной обстановке. Именно на этом заводе и были созданы лампы, вызвавшие восторг даже у американцев. Только не 60 лет назад, а уже в наши дни. (см. статью на http://www.radiomuseum.org «Russian Subminiature Tubes constructed entirely differently from other subminiature tubes». Таких ламп не было ни где в мире. Это стержневые радиолампы. Автором идеи использования вместо витых сеток стержневых электродов был Авдеев Валентин Николаевич, имя которого сейчас мало кому известно. Надежность таких ламп превышала 5000 часов. Они обладали удивительной экономичностью и как показывает американский автор в своей статье по сравнению с американскими миниатюрными лампами обладают заметно более высокими характеристиками. Эти лампы не устанавливались в панельки при монтаже, а впаивались как резисторы и конденсаторы на платы радиоаппаратуры.
В 50 годы электронные приборы получили массовое распространение, их номенклатура расширилась от усилительных и генераторных радиоламп разных типов и характеристик до электроннолучевых трубок разных размеров и очень чувствительных фотоэлектронных приборов. Опять наступило насыщение в развитии радиоэлектроники. Нужен был новый качественный скачок для ее новой модернизации.
Новый исторический этап развития радиоэлектроники наступил с изобретением транзисторов. Полупроводниковые триоды, как тогда их называли, становятся непременной и существенной частью радиоэлектронных систем. Их применение приводит к коренным изменениям в радиоэлектронной аппаратуре как схемотехническим, так и конструктивным. Первые промышленные разработки полупроводниковых приборов в СССР относятся к 1947 году, когда в НИИ «ИСТОК» были внедрены в производство СВЧ диоды для радиолокационных систем сантиметрового и миллиметрового диапазонов. Эти работы были проведены под руководством А.В. Красилова. Первая публикация в СССР 1948 года под названием «Кристаллический триод» также принадлежит А.В. Красилову [6]. Он же в 1949г. Совместно с С.Г. Мадоян создает первый в СССР макетный образец действующего транзистора. 14 сентября 2010 года в ФГПУ «Пульсар» отмечалось столетие со дня рождения Красилова А.В.- создателя первых отечественных транзисторов, д.т.н., лауреата Сталинской премии, заслуженного деятеля науки Российской Федерации. Первыми транзисторами выпущенными отечественной промышленностью в НИИ "ИСТОК"(НИИ-160). были точечные триоды КС1, КС2, КС3, КС4, КС5, КС5, КС6, КС7, и КС8. Первые шесть типов предназначались для использования в усилительных схемах на частотах не выше 5 МГц два последних типа были предназначены для генерирования колебаний до 1,5МГц(КС7) и до 5МГц(КС8). Вскоре триоды типа КС были сняты с производства и заменены новой модификацией более высокочастотных (до10 МГц) точечных триодов С1 (усилительные триоды) и С2 (генераторные триоды) и их варианты в герметичных корпусах С3 и С4.
Первыми промышленными типами плоскостных триодов в СССР являлись сплавные германиевые триоды типа П1, П2 и П3, выпуск которых начался с 1955г. (первые варианты этих триодов имели маркировку КСВ-1, КСВ-2 и КСВ-3). Вскоре на смену этих транзисторов пришли мощные транзисторы П4 и миниатюрные транзисторы П5. Максимально допустимый ток коллектора для триодов П4 составлял 5А. А транзисторы П5 отличались низким коэффициентом шумов, допускающих их использование во входных каскадах высокочувствительных усилителей низкой частоты, например, в слуховых аппаратах. Более совершенным транзистором можно считать появившийся в то время плоскостной триод П6, который выпускался по технологии с применением точечной и кольцевой сварки, заменившей пайку. Такое усовершенствование обеспечивало высокую устойчивость к механическим нагрузкам. Срок службы триодов П6 возрос до 5000ч, а максимальная рабочая температура до +100°С. В дальнейшем модификация триодов П6 получила наименование П13,П14 и П15. Полупроводниковые приборы становятся непременной и существенной частью радиоэлектронных систем. Их применение приводит к коренным изменениям в радиоэлектронной аппаратуре как схемотехническим, так и конструктивным. Появляются полупроводниковые источники электрической энергии - это и солнечные батареи, и термоэлектрические генераторы. Широко используются полупроводниковые источники света, это и светодиоды, и полупроводниковые лазеры. Совершенствование полупроводниковой технологии позволило существенно уменьшить габариты разрабатываемых радиоэлектронных систем сначала за счет микромодульных конструкций, а затем и микросборок, используя монтаж с бескорпусными полупроводниковыми элементами. Но вот наступает новый переломный момент в развитии радиоэлектроники, когда почти одновременно в СССР (НИИ «Пульсар»)[7], и США (Texas Instruments)[8] создаются первые твердотельные интегральные схемы. Интегральная радиоэлектроника хотя и медленно, но набирает обороты. Интегральные микросхемы постепенно вытесняют транзисторы как в аналоговых, так и цифровых устройствах. Появляются настольные вычислительные машины на цифровых интегральных микросхемах.
Это этап программируемой радиоэлектроники. А теперь постараемся ответить на важный вопрос. Что же характерно для нового современного этапа развития радиоэлектроники и почему современную радиоэлектронику можно смело назвать программируемой.
Вопросы для самопроверки 1. Сколько и какие этапы насчитывает история радиоэлектроники. 2. На каком историческом этапе возник термин радиотехника? 3. Чему способствовало в радиотехнике появление радиоламп? 4. На каком историческом этапе радиотехника приобрела более емкое понятие - радиоэлектроника? 5. Как можно назвать современный этап развития радиоэлектроники?
http://www.techbook.ru/book.php?id_book=719
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|