Термометры сопротивления (Rt)
Стр 1 из 3Следующая ⇒ Классификация приборов для измерения температуры В зависимости от методики измерений все типы термометров делятся на 2 класса: контактные и бесконтактные. Контактные – их отличительной особенностью является необходимость теплового контакта между датчиком термометра и средой, температура которой измеряется. Контактные приборы по принципу измерения делятся на: 1. Термометры расширения. 2. Манометрические термометры. 3. Термометры сопротивления. 4. Термопары. Бесконтактные - это такие термометры, для измерения которыми нет необходимости в тепловом контакте среды и прибора, а достаточно измерений собственного теплового или оптического излучения. Бесконтактные делятся на: 1. пирометры излучения; 2. радиометры; 3. тепловизоры. Термометры расширения В них используются свойства твердых и жидких тел изменять свою длину или объем под влиянием температуры окружающей среды. Термометры расширения бывают двух типов: 1. жидкостные; 2. твердых тел (биметаллические). Термометры жидкостные стеклянные Они получили большое распространение, благодаря простоте отсчета температуры, широкому температурному интервалу (от -1900С до +10000С) и достаточной точности измерения. Измерение температуры основано на изменении объема термометрической жидкости. Термометрической жидкостью служит: ртуть, толуол, этиловый спирт, пентан и др., но лучшей жидкостью является ртуть, которая не смачивает стекло, а потому дает наиболее точные показания (от -300С до +7000С). Технические термометры градуируют в 0С. Погрешность показаний не превышает 1 деление шкалы. В зависимости от конструкции термометры бывают двух типов: палочные и со вложенной шкалой. В зависимости от назначения термометры бывают лабораторные, образцовые и технические. Разновидностью ртутных являются контактные термометры, их используют для сигнализации температуры.
Недостатки: 1. Механическая непрочность. 2. Недостаточная четкость и наглядность шкалы. 3. Невозможность регистрации показаний на бумаге и передачи их на расстояние. Манометрические термометры Принцип действия основан на зависимости давления в замкнутой термосистеме от измеряемой температуры.
1 - манометрическая часть; 2 – капилляр; 3- термобаллон.
Рис. Манометрические термометры Прибор состоит из термобаллона, капилляра и манометрической части. Эта термосистема (1, 2, 3) заполняется газом, жидкостью или смесью жидкости с ее насыщенным паром. Термобаллон помещают в зону измерения температуры. При нагревании термобаллона давление рабочего вещества внутри замкнутой системы увеличивается. Увеличение давления воспринимается манометрической пружиной, которая воздействует через передаточный механизм на стрелку или перо прибора. Шкала градуируется в 0С. В качестве манометрической части могут быть: ОБМ, МТ, ЭКМ, МСС. Длина и диаметр термобаллона могут быть различны. Термобаллон обычно изготавливают из стали или латуни, капилляр - из медной или стальной трубки с внутренним диаметром от 0,15 до 0,5 мм. Длина капилляра может быть до 60 метров. Для защиты от механических повреждений капилляр помещают в защитную оболочку из оцинкованного стального провода. Эти приборы измеряют температуру в интервале от - 1200С до + 6000С. Различают манометрические термометры: 1. Газовые – (заполняются азотом, аргоном или гелием). 2. Жидкостные - (заполнитель - полиметилсилоксановая жидкость, спирт, ртуть) 3. Конденсационные - термобаллон частично заполняются низкокипящей жидкостью (ацетон, фреон); остальное его пространство - пары этой жидкости.
Манометрические термометры бывают: показывающими, самопишущими, контактными. Основная их погрешность ±1,5%. Манометрические термометры широко применяются в химических производствах. Они просты по устройству, надежны в работе и при отсутствии электропривода диаграммной бумаги взрывопожаробезопасны. Основной их недостаток - интерционность. Наиболее распространены: ТПГ - термометр показывающий газовый. ТПЖ - термометр показывающий жидкостный. ТГС-711-ТГС-712 - термометр газовый самопишущий ТКП- 160 – термометр конденсационный показывающий Термометры сопротивления (Rt) Принцип действия термометров сопротивления основан на свойстве проводниковых и полупроводниковых материалов изменять электрическое сопротивление при изменении температуры окружающей среды. Однако, измерить температуру одним лишь термометром сопротивления нельзя. Они работают в комплекте со вторичным прибором - мостом или логометром. Термометр сопротивления погружают в контролируемую среду и соединяют электрическими проводами со вторичным прибором, шкала которого отградуирована в 0С. Преимущества термометров сопротивления перед манометрическими термометрами: 1. более высокая точность измерения; 2. возможность передачи показаний на большие расстояния; 3. возможность централизации контроля температуры (до 12 Rt может быть подключено к одному мосту); 4. меньшее запаздывание показаний. Термометр сопротивления состоит из чувствительного элемента и наружной (защитной) арматуры. В качестве материала для чувствительного элемента используют медь и платину. Эти материалы выбраны потому, что на их сопротивление заметно влияет изменение температуры окружающей среды (большой температурный коэффициент сопротивления), причем это зависимость близка к линейной: Rt = Rо (1+ αt0), где α - температурный коэффициент сопротивления. Кроме того, медь и платина химически стойки в пределах измеряемых температур. Чувствительный элемент термометра сопротивления представляет собой тонкую платиновую или медную проволоку, намотанную на каркас из диэлектрика. Концы проволоки припаивают к выводам, которые присоединяют к зажимам головки термометра. Такой чувствительный элемент помещают в стальную защитную арматуру, снабженную устройством для установки на объекте измерения.
Термометры сопротивления бывают двух типов: платиновые (ТСП) и медные (ТСМ). ТСП - предназначены для измерения температуры от - 2000С до + 6500С; имеют следующие градуировки: Гр. 20 (Rо=10 Ом) Гр. 21 (Rо=46 Ом) Гр. 22 (Rо=100 Ом). Новые градуировки ТСП: 10П, 50П, 100П. 10, 50, 100 – сопротивление при 00С; П – платиновые. ТСМ - предназначены для измерения температуры от -500 до +1800С. Имеют следующие градуировки: Гр. 23 (Rо=53 Ом) → 50 М Гр. 24 (Rо=100 Ом) → 100 М Выпускаются термометры сопротивления различной длины; длина монтажной части может быть до 3200 мм. В качестве вторичных приборов в комплекте с термометрами сопротивления применяют автоматические электронные мосты. Подключение датчиков термосопротивления производится по двух, трех или четырех проводной схеме. Двухпроводная схема подключения используется крайне редко, так как в этом случае сопротивление соединительных проводов вносит существенную погрешность в измерение. Наиболее часто используется трехпроводная схема подключения – именно по этой схеме датчики термосопротивления подключаются к контроллерам Siemens серии S300 как впрочем и к контроллерам других серий и других производителей. Четырехпроводная схема в основном используется при подключении датчиков термосопротивления к приборам технического и коммерческого учета потребления энергоресурсов, где важно максимально точное измерение температуры. Именно при четырехпроводной схеме осуществляется полная компенсация сопротивления соединительных проводов и наибольшая точность показаний. Датчики термосопротивления чаще всего имеют четыре клеммы для подключения соединительных проводов, широко распространены и датчики с тремя клеммами. Датчики с двумя клеммами встречаются редко и, как правило, они имеют соединительные провода фиксированной длины заводского изготовления, с помощью которых датчик присоединяется к вторичному прибору.
Электронный равновесный мост В качестве вторичных приборов в комплекте с термометрами сопротивления применяются обычно автоматические электронные равновесные мосты. Равновесные мосты служат для измерения сопротивления термометра сопротивления.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|