Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Задачи и проблемы взаимодействия наук на примере биологии и физики.

               

           В познании свойств живой материи в последнее время все большую и большую роль играют химия и физика. В конце XIX века развитие органической химии привело к возникновению биохимии, которая сформировалась в самостоятельную науку, достигшую в настоящее время высокого уровня развития.

           Труднее проникала в биологию физика. Еще в прошлом столетии, по мере развития физики, делались многочисленные попытки использовать ее методы и теории для изучения и понимания природы биологических явлений. При этом на живые ткани и клетки смотрели как на физические системы и не учитывали того, что основную определяющую роль в этих системак играет химия. Именно поэтому попытки подойти к биологическим объектам с чисто физических позиций носили наивный характер.

           Основным методом этого направления являлись поиски аналогий.

           Биологические явления, сходные внешне с явлениями чисто физическими, трактовались, соответственно, как физические. Например эффект мышечного сокращения объясняли пьезоэлектрическим механизмом на основании того, что при наложении потенциала на кристаллы происходило изменение их длины. На рост клеток смотрели как на явление, вполне аналогичное росту кристаллов. Клеточное деление рассматривали как явление, обусловленное лишь поверхностно активными свойствами наружных слоев протоплазмы. Амебоидное движение клеток рассматривали как результат изменения их поверхностного натяжения и, соответственно, моделировали движением ртутной капли и растворе кислоты.

           Даже значительно позже, в двадцатых годах нашего столетия, детально рассматривали и изучали модель нервного проведения, так называемую модель Лилли, представлявшую собой железную проволоку, которая погружалась в раствор кислоты и покрывалась при этом пленкой окиси. При нанесении на поверхность царапины окись разрушалась, а затем восстанавливалась, но одновременно разрушалась в соседнем участке и т.д. Другими словами, получилось распространение волны разрушения и восстановления, очень похожее на распространение волны электроотрицательности при раздражении нерва.

           Возникновение квантовой теории привело к попытке объяснить действие лучистой энергии на биологические объекты с позиций статической физики. Появилась формальная теория, которая объясняла лучевое поражение как результат случайных попаданий кванта (или ядерной частицы) в особо уязвимые клеточные структуры. При этом совершенно упускались из виду те конкретные фотохимические и последующие химические процессы, которые определяют развитие лучевого поражения во времени.

           Еще недавно на основании формального сходства закономерностей электропроводности живых тканей и электропроводности полупроводников пытались применить теорию полупроводников для объяснения структурных особенностей целых клеток.

           В настоящее время разрабатываются модели, которые в какой-то мере воспроизводят поведение целых живых организмов. Так были созданы электронная мышь и электронная черепаха. Они действительно выполняют некоторые акты, присущие живым организмам. Но механизмы, лежащие в основе их работы, отличны от механизмов процессов жизнедеятельности. Познавательное значение подобных моделей для биофизики ограничено.

           В общем, надо отметить, что направление, базирующееся на моделях и аналогиях, хотя и может привлечь к работе весьма совершенный математический аппарат, вряд ли приблизит биологов к пониманию сущности биологических процессов. Попытки использования чисто физических представлений для понимания жизненных явлений и природы живой материи дали большое количество спекулятивных теорий и ясно показали, что прямой путь физики в биологию не продуктивен, так как живые организмы стоят несравненно ближе к химическим системам, чем к физическим.

           Значительно более плодотворным оказалось внедрение физики в химию. Применение физических представлений сыграло большую роль в понимании механизмов химических процессов. Возникновение физической химии сыграло в химии революционную роль. На основе тесного контакта физики и химии возникли современная химическая кинетика и химия полимеров. Некоторые разделы физической химии, в. которых физика получила доминирующее значение, стали называться химической физикой.

           Необходимость возникновения физической химии и химической физики диктовалась тем, что к концу XIXв. химия накопила огромный фактический материал. Стали известны десятки тысяч разнообразных соединений и поэтому возникла необходимость установить общие закономерности, которые показали бы связь строения молекул с их реактивной способностью. Такую связь можно установить только при помощи физики.

Именно с возникновением физической химии связано развитие биофизики. Многие важные для биологии представления пришли в нее из физической химии. Например, появление в физической химии теории растворов и установление факта, что соли в водных растворах распадаются на ионы, привело к представлению о важной роли ионов в основных процессах жизнедеятельности.

           Было установлено, что в явлениях возбуждения и проведения решающая роль принадлежит именно ионам. Так возникли ионные теории возбуждения, разработанные Нернстом и П.П.Лазаревым.

           С успехами коллоидной химии связаны исследования, в которых было показано, что в основе повреждения протоплазмы различными факторами лежит коагуляция биоколлоидов. В связи с возникновением учения о полимерах коллоидная химия протоплазмы переросла в биофизику полимеров и, особенно, полиэлектролитов.

Появление химической кинетики также вызвало появление аналогичного направления в биологии. Еще Аррениус – один из основателей химической кинетики, показал, что общие закономерности химической кинетики применимы к изучению кинетических закономерностей в живых организмах ик отдельным биохимическим реакциям.

           Успехи применения физической и коллоидной химии при объяснении ряда биологических явлений нашли отражение и в медицине. Была выявлена роль ионных и коллоидных явлений в воспалительном процессе. Физико-химическую интерпретацию получили закономерности клеточной проницаемости и ее изменений при патологических процессах. Таким образом открылась новая глава патологии – физико-химическая патология.

           Новое направление в биологии, базирующееся на физике и физической химии, стали называть физико-химической биологией, биологической физико-химией, биофизической химией. Позже все эти термины были объединены одним термином – биофизика. По существу биофизика – это физическая химия и химическая физика биологических систем.

            Характерной чертой биофизики, отличающей ее от биохимии, является то, что она рассматривает целостные системы, не разлагая их по возможности на отдельные химические компоненты Биофизик всегда должен иметь в виду, что элементарные жизненные процессы протекают в сложных высокополимерных комплексах. При выделении же в чистом виде отдельных компонентов утрачиваются, как правило, важнейшие свойства живого. Нормально функционировать биополимеры способны только в условиях ненарушенной живой системы. Поэтому перед биофизикой встает задача получения информации о физико-химическом строении клетки и ее биополимеров именно в таком виде, в котором они существуют при жизни. Получение же сведений от живой функционирующей системы требует применения таких физических методов и в таких условиях, при которых они сами не вносят каких-либо изменений в исследуемую систему. Между тем многие применяемые в экспериментальной биологии воздействия производят в живых системах необратимые изменения. Например, изменения температуры, различные растворители, соли, кислоты и т.п. приводят к разрушению высокополимерных комплексов, хотя внешняя форма клетки и ее органоидов при этом может сохраняться.

           О нарушении жизненных процессов можно прежде всего судить по изменению физических параметров, характерных для живых клеток. При всех вышеупомянутых воздействиях клетки теряют например, способность к поляризации. Это говорит о том, что физико-химические свойства, характерные для живой клетки, существенно меняются при повреждении. Кроме того, при различных воздействиях на клетку могут возникать и артефакты – образовываться структуры и соединения, которых нет в неповрежденных клетках. В зтом отношении критического подхода требует, например, электронная микроскопия, являющаяся мощным познавательным средством для биологии. С ее помощыо цитология и вирусология сильно расширили свои горизонты. Однако, когда при помощи только электронной микроскопии пытаются вскрыть детали тонкого молекулярного строения живого вещества, исследователи иногда сталкиваются с артефактами, что может приводить к ошибочным выводам.

           Большая сложность и высокая лабильность живых объектов ставит биофизика в трудные условия и вынуждает его перерабатывать физические методы, создавая специализированные биофизические методы и приемы. Стремление изучать по возможности ненарушенную или лишь минимально измененную живую систему вынуждает биофизиков пользоваться очень слабыми источниками излучения при исследовании оптических свойств клеток, слабыми электрическими токами при измерении электрических параметров и т.п. Поэтому же в своих исследованиях биофизики должны широко использовать усилительную технику.

           За последнее время четко выявился ряд теоретических и практических проблем, которые могут и должны решаться именно биофизикой. Биофизика занимается, в первую очередь, вопросами размена энергии в биологическом субстрате, исследованием роли субмикроскопических и физико-химических структур в жизнедеятельности клеток и тканей, возникновением возбуждения и происхождением биоэлектрических потенциалов, вопросами авторегулирования физико-химических процессов в живых организмах. Конкретные задачи современной биофизики весьма разнообразны.

           Одна из основных задач биофизики – выявление физических и физико-химических параметров, характерных для живых объектов. Известно, что характерным свойством живых клеток является наличие электрического потенциала между клеткой и окружающей средой; способность удерживать ионный градиент по калию и натрию между клеткой и средой; способность поляризовать электрический ток. При гибели живого объекта эти свойства исчезают. В зафиксированных гистологических препаратах выявляются надмолекулярные структуры, отсутствующие в живых неповрежденных клетках. В то же время тонкие молекулярные структуры клетки, обеспечивающие ее основные прижизненные свойства, оказываются нарушенными. Поэтому именно вопрос о выявлении истинных молекулярных структур и определение прижизненных физико-химических параметров биологических объектов приобретает огромное значение.

           Одним из важнейших направлений биофизики является изучение биологического действия ионизирующих излучений. Эта проблема разносторонне изучается различными дисциплинами (физиологией, биохимией, патологией и др.), но самая существенная роль отводится здесь биофизике. Важнейшим моментом в действии лучистой энергии на биологический субстрат является первичный переход физической энергии, поглощенной биологическим субстратом, в хнмическую энергию и развитие первичных химических реакций. При этом происходит образование высокоактивных радикалов и ионов, которые и служат центрами первичных реакций. Первичный выход активных химических продуктов определяет все дальнейшее развитие лучевого поражения. Поэтому в настоящее время первостепенное значение приобретает исследование химической природы первичных радикалов и кинетики радикальных реакций. Отсюда вытекает и важная задача торможения радиационно-химических реакций различными ингибиторами природного происхождения.

           Ослабление радиационного эффекта – вполне реальная задача. При введении в организм перед облучением некоторых веществ-ингибиторов осуществляется так называемая химическая защита. Биофизика выявляет физико-химические свойства молекул веществ-ингибиторов и на основе общих принципов дает методы

подбора необходимых соединений.

           Вопрос размена и передачи энергии при фотохимических процессах стоит в основе другой важной биофизической проблемы – проблемы механизма фотосинтеза. С этой проблемой связан также еще один принципиальный для биофизики вопрос: вопрос о возможности миграции энергии и о механизме такой миграции. Есть основания полагать, что химическая реакция при фотосинтезе протекает не в том месте, где осуществляется первичный процесс взаимодействия квантов света с веществом, а на некотором расстоянии, т.е. там, куда переносится поглощенная энергия.

           В таком же аспекте изучаются биофизикой первичные механизмы, лежащие в основе зрительного акта, исследуются продукты фотохимических реакций, происходящих при поглощении энергии света пигментами зрительных рецепторов.

           Следующим важным направлением биофизики является исследование проницаемости клеток и тканей. Физико-химическая биология уже давно занимается выявлением закономерностей проникновения вещества в живые клетки. Это практически важный вопрос, так как с проницаемостью связано фармакологическое:действие лекарственных веществ и токсическое действие различных ядов. Проникновение веществ в клетки зависит в первую очередь от физико-химических свойств молекул, их растворимости, их электрических свойств – распределения зарядов. Биофизика должна установить коррелятивную связь между этими свойствами ващества и его способностью проникать в клетки. С другой стороны, проницаемость связана со способностью поверхностных клеточных мембран пропускать те или иные вещества. Поэтому биофизика изучает и физико-химические свойства биологических мембран и способы повышения или понижения проницаемости действием различных агентов. Последнее имеет большое значение для лечебных мероприятий, для применения ядовитых инсектицидов в сельском хозяйстве, при дезинфекции и т. п.

           Протоплазма клеток состоит из высокополимерных веществ, в основном полиэлектролитов, и обладает свойствами, присущими этому классу соединений. Углубленные исследования в этой области открывают новые возможности для изучения свойств протоплазмы. В частности, в настоящее время уже удалось значительно приблизиться к пониманию вопроса об избирательном поглощении калия живыми клетками.

           Изучение физико-химических превращений биополимеров в клетке тесно связано с выявлением механизма возникновения возбуждения и биоэлектрических потенциалов как в недифференцированных клетках, так и в специализированных нервных и мышечных элементах. Физиология уже давно использует биоэлектрические потенциалы для оценки физиологических и патологических состояний организма. Перед биофизикой стоит другая большая задача – выявить физико-химические причины появления и развития биоэлектрических потенциалов, определить их энергетические источники и этим открыть путь для более глубокого анализа физико-химического состояния клеток в норме и патологии.

           Биофизика вместе с другими дисциплинами принимает сейчас участие в расшифровке важнейших вопросов о физико-химических механизмах передачи наследственных свойств и изучает механизмы, определяющие устойчивость вида и его изменчивость. При этом анализируются те силы, которые вызывают деление и расхождение хромосом, физико-химические основы взаимодействия нуклеиновых кислот, физико-химическая природа гена и т.д.

           Наконец, в настоящее время большое внимание биофизики привлекает проблема авторегуляции. В изучении авторегуляции заинтересована не только биология, но и техника, так как некоторые механизмы авторегулирования, существующие у живых организмов, могут послужить источником новых идей для различных областей техники. Действительно, в биологических системах существуют весьма совершенные механизмы для регулирования химических реакций, лежащих в основе энергетического обмена веществ. В клетках с удивительным постоянством поддерживаются величины рН и ионный баланс калия и натрия даже при значительных изменениях концентрации во внешней среде. Биологические системы очень хорошо координируют уровни протекания энергетических процессов. При этом, несмотря на высокую лабильность и способность реагировать на незначительные изменения во внешней среде, биологические системы обладают высокой надежностью. Авторегулирующие механизмы играют большую роль в приспособлении животных и растений к изменяющимся условиям внешней среды. Для понимания вопросов авторегулирования требуется разработка термодинамики и кинетики биологических процессов, что и составляет важнейшую задачу биофизики.

 

Пути âçàèìîäåéñòâèÿ íàóê.

 

           Äâå ñëåäóþùèå ôîðìû âçàèìîñâÿçè íàóê – èõ "ïåðåïëåòåíèå" è "ñòåðæíåçàöèÿ". Àíàëèç ïðîöåññà âçàèìîäåéñòâèÿ íàóê â íàøå âðåìÿ ïîçâîëÿåò ñäåëàòü ñëåäóþùèé âûâîä: îñíîâíûìè òåíäåíöèÿìè â ýâîëþöèè ñîâðåìåííûõ íàóê íà÷èíàÿ ïðèìåðíî ñ ñåðåäèíû ÕÕâ.– ñ ìîìåíòà ïîëíîãî ðàçâåðòûâàíèÿ íàó÷íî-òåõíè÷åñêîé ðåâîëþöèè – ñòàëî äâèæåíèå â ñòîðîíó èõ "ïåðåïëåòåíèÿ" è èõ "ñòåðæíåçàöèè". Îäíàêî â ñàìîé ñòðóêòóðå íàó÷íîãî çíàíèÿ, â åãî àðõèòåêòîíèêå åùå ñèëüíû è äàþò ñåáÿ çíàòü åãî "ðîäèìûå ïÿòíà", ñâèäåòåëüñòâóþùèå î ðîæäåíèè íàóê â ïåðèîä ãîñïîäñòâà îäíîñòîðîííå-àíàëèòè÷åñêîãî ìåòîäà èññëåäîâàíèÿ.  ñàìîì äåëå, íà÷èíàÿ ñ XVI – XVIII ââ. âñå íàó÷íîå çíàíèå áûëî ðàñ÷ëåíåíî íà ðÿä ôóíäàìåíòàëüíûõ îòðàñëåé, ðåçêî îáîñîáëåííûõ ìåæäó ñîáîé. Ýòî ïîâëåêëî çà ñîáîé äâà ñëåäñòâèÿ:

* ïåðâîå – ÷ëåíåíèå çíàíèÿ íà åãî îòäåëüíûå îòðàñëè, ò.å. óçêóþ ñïåöèàëèçàöèþ;

* âòîðîå – îáðàçîâàíèå ìåæäó ýòèìè îòðàñëÿìè ðåçêèõ ðàçðûâîâ, ò.å. ïîëíîå îáîñîáëåíèå îäíîé ñïåöèàëüíîñòè îò äðóãîé.

           Ïîñëåäóþùåå ðàçâèòèå íàóê â ñòîðîíó óñòàíîâëåíèÿ èõ âçàèìîñâÿçè ÷àñòè÷íî ïðåîäîëåëî, òî÷íåå ñêàçàòü, ñòàëî ïðåîäîëåâàòü ýòè ñëåäñòâèÿ îäíîñòîðîííå ïðèìåíåííîãî àíàëèçà: ïåðâîå ñëåäñòâèå, îäíàêî, îñòàëîñü, â ñóùíîñòè, íåçàòðîíóòûì, è âåñü íàó÷íûé ïðîãðåññ ñîâåðøàëñÿ è íåðåäêî ñîâåðøàåòñÿ ïîêà â ðàìêàõ ïðåæíèõ îòäåëüíûõ íàóê. Ïðåîäîëåíî ëèøü âòîðîå ñëåäñòâèå áëàãîäàðÿ âîçíèêíîâåíèþ íàóê ïðîìåæóòî÷íîãî õàðàêòåðà. Âñòàåò âîïðîñ: íå íàìåòèëèñü ëè óæå â íàñòîÿùåå âðåìÿ òåíäåíöèè ê ïðåîäîëåíèþ ïåðâîãî ñëåäñòâèÿ, к которому привело одностороннее применение анализа?

           Òàêèå òåíäåíöèè íà÷èíàþò ïðîÿâëÿòñÿ ñêàæäûì äíåì âñå ñèëüíåå. Îíè íàïðàâëåíû îò ïðåîäîëåíèÿ îñòàòêîâ áûëîé îáîñîáëåííîñòè è çàìêíóòîñòè íàóê ê èõ âçàèìîäåéñòâèþ.  ïðîøëîì âíóòðåííÿÿ ñâÿçü íàóê îáíàðóæèëàñü êàê âîçíèêíîâåíèå ïåðåõîäíûõ "ìîñòîâ" ìåæäó ðàíåå ðàçîáùåííûìè ìåæäó ñîáîé íàóêàìè. Íî çà ïðåäåëàìè ýòèõ "ìîñòîâ", ò.å. çà ïðåäåëàìè ïðîìåæóòî÷íûõ îòðàñëåé íàó÷íîãî çíàíèÿ, êàæäàÿ ôóíäàìåíòàëüíàÿ íàóêà ïðîäîëæàëà çàíèìàòüñÿ ñâîèì ñîáñòâåííûì ïðåäìåòîì – ñâîåé ñïåöèôè÷åñêîé ôîðìîé äâèæåíèÿ èëè ñïåöèôè÷åñêîé ñòîðîíîé îáúåêòà èçó÷åíèÿ, îòãîðàæèâàÿñü îò äðóãèõ íàóê. Íî óæå ïîÿâëåíèå ïðîìåæóòî÷íûõ îòðàñëåé íàóêè âíåñëî ñþäà ñåðüåçíûå êîððåêòèâû: â àñòðîôèçèêå ñîåäèíèëèñü ïðè èçó÷åíèè îáùåãî äëÿ íèõ êðóãà ÿâëåíèé ôèçèêà è àñòðîíîìèÿ; â ãåîõèìèè – ãåîëîãèÿ è õèìèÿ; â áèîõèìèè – áèîëîãèÿ è õèìèÿ; â áèî- ãåîõèìèè – âñå ýòè òðè íàóêè è ò.ä.

           Îäíàêî çà ïðåäåëàìè òàêèõ "ìîñòîâ" ñàìè íàó÷íûå "áåðåãà", ñîåäèíÿåìûå ýòèìè "ìîñòàìè", îñòàâàëèñü ïî-ïðåæíåìó îáîñîáëåííûìè äðóã îò äðóãà, çàìêíóòûìè â ñåáå.  äàëüíåéøåì ýòè ðàíåå îáîñîáëåííûå íàóêè ïðèâîäÿòñÿ âî âñå áîëåå àêòèâíîå âçàèìîäåéñòâèå, âî âçàèìíûé êîíòàêò. Ñíà÷àëà ýòî áûëè ðàçëè÷íûå åñòåñòâåííûå íàóêè, îñòàâàâøèåñÿ â îñíîâíîì âñå åùå îáîñîáëåííûìè îäíà îò äðóãîé è çàìêíóòûìè

ïî-ïðåæíåìó â ñåáå; òàê ýòî ïðîèñõîäèëî, íàïðèìåð, ïðè îäíîâðåìåííîì èçó÷åíèè íå òîëüêî æèçíè, íî è äðóãèõ îáúåêòîâ ïðèðîäû, ñêàæåì, ìàíòèè ýåìíîé êîðû èëè æå êîñìîñà. Âñåì ýòèì áûë ñäåëàí ñóùåñòâåííûè øàã â ñòîðîíó ïðåîäîëåíèÿ áûëîé çàìêíóòîñòè íàóê è âêëþ÷åíèÿ èõ â îáùåå, îáúåäèíÿþùåå èõ èññëåäîâàíèå ïðèðîäíûõ âåùåé è ïðîöåññîâ. Ïðè ýòîì îáúåäèíÿþùèì èõ íà÷àëîì, ñòèìóëîì, âûçûâàþùèì íåîáõîäèìîñòü è âîçìîæíîñòü èõ âçàèìîäåéñòâèÿ, ñëóæèëî òî, ÷òî îíè èçó÷àëè îäèí è òîò æå îáùèé äëÿ íèõ îáúåêò ïðèðîäû. Ïîñòåïåííî òàêîå âçàèìîäåéñòâèå íàóê óñèëèâàëîñü â ãðîìàäíîé ñòåïåíè, îêàçûâàÿ ñâîå âëèÿíèå íà âñþ ñòðóêòóðó ñîâðåìåííîãî íàó÷íîãî çíàíèÿ.     

           Ñêàçàííîå îá èçó÷åíèè ïðèðîäíûõ îáúåêòîâ ïóòåì âçàèìîäåéñòâèÿ íàóê êàñàåòñÿ èçó÷åíèÿ òàêæå è ñîöèàëüíûõ ÿâëåíèé. Òàê èçó÷åíèå ÿâëåíèé ïðåñòóïíîñòè ìàëîëåòíèõ è ðàñêðûòèå ïðè÷èí ýòèõ îñòðî íåãàòèâíûõ ñîöèàëüíûõ ÿâëåíèé íåâîçìîæíî îñóùåñòâèòü îäíîé êàêîé-ëèáî îòðàñëüþ îáùåñòâåííûõ íàóê èëè íåñêîëüêèìè, íî ðàçîáùåííûìè ìåæäó ñîáîé îáùåñòâåííûìè íàóêàìè. Òîëüêî â èõ òåñíåéøåì âçàèìîäåéñòâèè ìåæäó ñîáîé ìîãóò áûòü ïîçíàíû ýòè ÿâëåíèÿ, ïðàâèëüíî âñêðûòû èõ ïðè÷èíû è íàéäåíû äåéñòâåííûå ïðàêòè÷åñêèå ïóòè è ñïîñîáû èõ èñêîðåíåíèÿ.  äàííîì ñëó÷àå â òàêîå âçàèìîäåéñòâèå ñ ïðàâîâûìè íàóêàìè äîëæíû áûòü ïðèâåäåíû íàóêè:

* ýêîíîìè÷åñêèå, èçó÷àþùèå ìàòåðèàëüíûå óñëîâèÿ æèçíè ìàëîëåòíèõ;

* ïåäàãîãè÷åñêèå, èçó÷àþùèå äåëî øêîëüíîãî âîñïèòàíèÿ è îáó÷åíèÿ;

* ñîöèîëîãè÷åñêèå, èçó÷àþùèå ñåìåéíóþ æèçíü è îáñòàíîâêó;

* ýòè÷åñêèå, èçó÷àþùèå âîïðîñ ñ åãî ìîðàëüíîé ñòîðîíû, âîïðîñ î ÷óâñòâå îòâåòñòâåííîñòè çà îáùåå äåëî;

* ôèëîñîôñêèå, èçó÷àþùèå èäåîëîãè÷åñêóþ ñòîðîíó âîïðîñà, ðîëü îáùåñòâåííîãî ñîçíàíèÿ â æèçíè îáùåñòâà;

* ïñèõîëîãè÷åñêèå, èçó÷àþùèå ïñèõèêó ïîäðàñòàþùåãî ïîêîëåíèÿ, è ò.ä.

           Ñëåäîâàòåëüíî, íåîáõîäèìî îðãàíè÷åñêîå âçàèìîäåéñòâèå âñåõ áåç èñêëþ÷åíèÿ ãóìàíèòàðíûõ íàóê, âêëþ÷àÿ îáùåñòâåííûå, à òàêæå, âîçìîæíî, è íåêîòîðûå áèîëîãè÷åñêèå, íàïðèìåð ãåíåòèêó.

           "Ïåðåïëåòåíèå" íàóê îçíà÷àåò òàêîå èõ âçàèìîäåéñòâèå, êîãäà íåñêîëüêî íàóê âõîäÿò ìåæäó ñîáîé â áîëåå èëè ìåíåå äëèòåëüíûé êîíòàêò â öåëÿõ ðåøåíèÿ êàêîé-ëèáî ñëîæíîé íàó÷íîé ïðîáëåìû èëè ðàçðàáîòêè êàêîãî-ëèáî ìíîãîãðàííîãî íàïðàâëåíèÿ. Òàêèå ñòàâøèå òåì ñàìûì ìåæäèñöèïëèíàðíûìè ïðîáëåìû è íàïðàâëåíèÿ âñëåäñòâèå èõ ñëîæíîñòè è ìíîãîãðàííîñòè íå ìîãóò áûòü ðåøåíû è ðàçðàáîòàíû ïîðîçíü îòäåëüíûìè íàóêàìè, è òîëüêî â òåñíåéøåì âçàèìîäåéñòâèè âñåõ èìåþùèõ ñþäà îòíîøåíèå íàóê ïîñòàâëåííàÿ öåëü ìîæåò áûòü äîñòèãíóòà.

            îòëè÷èå îò ïðåäûäóùåé ôîðìû âçàèìîñâÿçè íàóê, êîãäà â ðåçóëüòàòå èõ "öåìåíòèðîâàíèÿ" âîçíèêàþò ïðîìåæóòî÷íûå íàóêè, ñîåäèíÿþùèå ñîáîé ïàðó ñìåæíûõ ôóíäàìåíòàëüíûõ íàóê, â ñëó÷àå "ïåðåïëåòåíèÿ" íàóê, êàê îñîáîé ôîðìû èõ âçà

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...