Определение напряжений при кручении стержней с круглым поперечным сечением
Рассмотрим стержень с круглым поперечным сечением (рис. 6, а), один конец которого закреплен, а другой нагружен парой сил с моментом Те. В результате действия момента внешних сил Те возникает деформация кручения. Наблюдая при кручении характер искажения прямоугольников координатной сетки, нанесенной на боковой поверхности круглого стержня, обнаружили: прямоугольная сетка превратится в сетку, состоящую из параллелограммов, что свидетельствует о наличии касательных напряжений в поперечных, а с учетом закона парности касательных напряжений и в продольных сечениях; контуры поперечных сечений в процессе деформации остаются плоскими, расстояния между ними не изменяются, а первоначальные прямолинейные образующие, нанесенные на боковую поверхность, превращаются в винтовые линии; диаметры торцового сечения повернутся на некоторый угол φ относительно своего начального положения, оставаясь прямой линией. Эти наблюдения позволили составить представление о механизме деформации кручения. Постоянство длины и диаметра деформируемого стержня свидетельствует об отсутствии нормальных напряжений в поперечных и продольных сечениях. Так как в поперечных и в продольных сечениях действуют только касательные напряжения, напряженное состояние в точках скручиваемого стержня представляет собой чистый сдвиг. Поперечные сечения, оставаясь плоскими, поворачиваются вокруг оси стержня относительно друг друга на некоторый угол, сохраняя длину и прямолинейность своих радиусов. Выделим двумя поперечными сечениями элемент (рис. 6. б) скручиваемого стержня длиной dx. В результате деформации одно сечение повернется относительно другого на угол dφ. Будем считать левое сечение элемента dx неподвижно закрепленным. Тогда dφ – угол поворота правого торцового сечения вокруг продольной оси. Образующую АВОО1 можно представить как параллелепипед длиной dx с бесконечно малыми основаниями АО1 и ВО. В результате деформации этот параллелепипед займет положение АВ'ОО1. Величина ВВ' = γdx = ρdφ представляет собой абсолютный сдвиг грани В на поверхности стержня относительно грани А в направлении, перпендикулярном радиусу стержня. Величина абсолютного сдвига точек основания ОВ параллелепипеда зависит от их расстояния ρ до оси стержня. Сдвиг равен нулю на оси стержня и максимален, т.е. равен ВВ' на поверхности. Угол сдвига соответственно будет равен
γ = (dφ/dx)ρ, (22) где dφ/dx – относительный угол закручивания. На основании закона Гука для сдвига можно записать τρ = G·γ = G(dφ/dx)ρ, (23) где G – модуль упругости материала стержня при сдвиге.
Рис. 6
Величина касательных напряжений в каждой точке сечения прямо пропорциональна расстоянию ρ от точки до центра масс сечения. На оси стержня при ρ = 0; напряжение τ = 0; в точках, расположенных в непосредственной близости от поверхности стержня напряжения максимальны. Эпюра изменения τρ вдоль диаметра сечения показана на рис. 5.18, в. Так как величина относительного угла закручивания dφ/dx неизвестна, зависимостью (5.47) для определения касательных напряжений в сечении не пользуются. Элементарная внутренняя сила, действующая в плоскости сечения на площадку dA с напряжением τρ равна dQ = τρ·dA. Элементарный момент внутренних сил, действующий в плоскости сечения, т.е. элементарный крутящий момент, создаваемый силой dQ относительно центра сечения dT = ρdQ. Сумма этих моментов внутренних сил по всей площади поперечного сечения стержня равна крутящему моменту
. Так как G = const и dφ/dx = const, то , (24) где Ip – полярный момент инерции сечения. Выразим величину угла закручивания, отнесенного к единице длины стержня dφ/dx = T/GIp. (25) с учетом формулы (25) примет вид τρ = (T/Ip) ·ρ. (26) При инженерных расчетах интерес представляют наибольшие напряжения в сечении, т.е. напряжения на поверхности стержня при ρ = d/2, , (27) где Wp = 2Ip/d– полярный момент сопротивления – отношение полярного момента инерции Ip сечения к расстоянию от наиболее удаленной точки сечения до центра масс. Полярный момент сопротивления для стержня круглого сечения диаметром d равен Wp ≈ 0,2d3, а для стержня кольцевого сечения с внутренним диаметром d 1 – Wp ≈ [0,2(d3 – d14/d)]. Условие прочности стержня при кручении с постоянным по длине поперечным сечением имеет вид τmax = Tmax / Wp ≤ τadm, (28) где Т max – максимальный крутящий момент по длине деформируемого стержня; τadm – допускаемое напряжение при кручении, для стали обычно равно 0,5 … 0,6 допускаемого напряжения σadm при растяжении. Предельный из условия прочности крутящий момент определяют по формуле Tu ≤ Wp·τadm, (29) а минимальный диаметр скручиваемого стержня, учитывая что Wp = = 0,2d3 ≥ Tmax/τadm равен d ≥ . (30) При сравнении стержней, выдерживающих одинаковый крутящий момент, т.е. имеющих поперечное сечение с равным полярным моментом сопротивления Wp, стержень с наименьшей площадью А поперечного сечения будет обладать меньшей массой. Для сравнения различных сечений применяют безразмерную величину, равную отношению Wp / . Чем больше эта величина, тем рациональнее по затратам материала сечение. Так, для швеллера, двутавра она равна 0,04 … 0,07, а для круглого кольца с отношением внутреннего диаметра к внешнему равному 0,9 – она равна 1,16. При кручении рациональным является использование стержней с круглым кольцеобразным сечением.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|