Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

IV. преобразовать чертеж проецирующей плоскости так, чтобы относительно новой плоскости она занимала положение плоскости уровня.

Решение этой задачи позволяет определить величины плоских фигур.

Новую плоскость проекций нужно расположить параллельно заданной плоскости. Если исходное положение плоскости было фронтально проецирующим, то новое изображение строят в системе П2┴П4, а если горизонтально проецирующим, то в системе П1┴П4. новая ось проекций будет расположена параллельно вырожденной проекции проецирующей плоскости. На рис. 8 построена новая проекция А4В4С4 горизонтально проецирующей плоскости Σ (АВС) на плоскости П4┴П1.

Если в исходном положении плоскость занимает общее положение, а нужно получить изображение её как плоскости уровня, то прибегают к двойной замене плоскостей проекций, решая последовательно задачу III, а затем задачу IV. При первой замене плоскость становиться проецирующей, а при второй – плоскостью уровня (рис.9)

В плоскости λ (DEF) проведена горизонталь h. По отношению к горизонтали проведена первая ось П14┴ h 1. Вторая нова ось проекций проведена параллельно вырожденной проекции плоскости, а новые линии связи – перпендикулярно вырожденной проекции плоскости. Расстояния для построения проекций точек на плоскости П5 нужно замерять на плоскости П1 от оси П14 и откладывать по новым линиям связи от новой оси П45. Проекция D5E5F5 треугольника DEF конгруэнтна самому треугольнику DEF.

 

Способ вращения.

 

Сущность этого способа заключается в том, что при неизменном положении основных плоскостей проекций изменяется положение заданных геометрических элементов относительно плоскостей проекций путем их вращения вокруг некоторой оси до тех пор, пока эти элементы не займут частное положение в исходной системе плоскостей.

В качестве осей вращения удобнее всего выбирать проецирующие прямые или прямые уровня, тогда точки будут вращаться в плоскостях, параллельных или перпендикулярных плоскостям проекций.

При вращении вокруг горизонталь проецирующей прямой i горизонтальная проекция А1 точки А перемещается по окружности, а фронтальная А2 – по прямой, перпендикулярной фронтальной проекции оси, являющейся фронтальной проекцией плоскости вращения Г2 (рис. 10). При этом расстояние между горизонтальными проекциями двух точек А и В (рис. 11) при их повороте на один и тот же угол ω остается неизменным.

Аналогичные выводы можно делать и для вращения вокруг фронталь проецирующей прямой. При вращении плоской фигуры вокруг оси перпендикулярной плоскости проекций, проекции её на эту плоскость не изменяются ни по величине, ни по форме, так как не изменяется наклон плоской фигуры к этой плоскости проекций, а меняется лишь положение этой проекции относительно линий связи. Вторая же проекция на плоскости, параллельной оси вращения, изменяется и по форме и по величине. Проекции точек на этой плоскости проекций находятся на прямых, перпендикулярных исходным линиям связи. Пользуясь этими свойствами, можно применить для образования чертежа способ вращения, не задаваясь изображением оси вращения и не устанавливая величину радиуса вращения. Это – способ плоскопараллельного перемещения, при котором все точки геометрической фигуры перемещаются во взаимно параллельных плоскостях без изменения действительного вида и размеров этой фигуры (рис. 12).

Треугольник АВС занимает общее положение. Первым плоскопараллельным превращением он поставлен во фронталь проецирующее положение с помощью горизонтали h, которую расположим как фронталь проецирующую прямую в её плоскости вращения Г║П1.

Вторым перемещением треугольник АВС расположен параллельно плоскости П1. Без изменения оставлена вырожденная фронтальная проекция треугольника (А2В2С2=(А2В2C2)? А новая горизонтальная проекция, дающая истинную величину треугольника АВС, получена построением новых горизонтальных проекций точек А1В1C1 в результате их вращения в параллельных фронтальных плоскостях уровня.

На этом примере рассмотрено решение третьей и четвертой исходных задач путем преобразования комплексного чертежа плоскости общего положения способом плоско параллельного перемещения.

Если в качестве оси вращения взять линию уровня, то истинную величину плоской фигуры общего положения можно построить одним поворотом, т.е. избежать двойного преобразования чертежа, что имело место в замене плоскостей проекций и плоско параллельном перемещении. На рис. 13 построено изображение треугольника АВС (А1В1С1) после поворота его вокруг горизонтали h (C, 1) до положения, совмещенного с горизонтальной плоскостью уровня Г∈ h. Так как горизонталь проходит через точку С, то последняя неподвижна при вращении треугольника. Нужно повернуть только точки А и В вокруг горизонтали до совмещения их с плоскостью   Г∥П1. Точка А вращается в горизонтально проецирующей плоскости ∑А, перпендикулярной оси вращения. Центр вращения О точки А лежит на оси вращения. В момент, когда в результате вращения точка А окажется в плоскости Г, т.е. совместиться с горизонтальной плоскостью уровня, её горизонтальная проекция А1 будет удалена от горизонтальной оси вращения h 1 на расстояние, равное истинной величине радиуса вращения RA точки А. Натуральную величину RA можно построить, как гипотенузу О1А прямоугольного треугольника, одним катетом которого является горизонтальная проекция радиуса А1О1, а вторым – разность высот точек А и О. Построив совмещенную горизонтальную проекцию точки А, легко достроить изображение всего треугольника А1В1С1 в совмещенном с плоскостью Г положении, используя неподвижную точку 1 и плоскость вращения точки В (∑В1h 1). Фронтальная проекция треугольника АВС выродиться в прямую и совместиться с проекцией Г2 плоскости совмещения.

Аналогичные действия выполняют при вращении плоской фигуры вокруг её фронтали. Совмещение в этом случае ведется с фронтальной плоскостью уровня (Ф∥П2), проходящей через ось вращения – фронталь.

 

 

Заключение.

 

Решении простарансвенных задач ан комплексном чертеже значительно упрощается, если интересующие нас элементы пространства занимают частные положение, т.е. располагаются параллельно или перпендикулярно плоскостям проекций. Получающиеся в этом случае «вырожденные» проекции помогают получить ответ на поставленную задачу или упростить ход её решения. Чтобы добиться такого положения геометрических элементов, комплексный чертеж преобразуют или перестраивают, исходя из конкретных условий. Преобразование чертежа отображает изменение положения геометрических образов или плоскостей проекций в пространстве. В основном используются два способа преобразования чертежа: способ замены плоскостей проекций и способ вращения.

 

Список используемой литературы:

М. П. Власов – Инженерная графика

А. И. Лагерь, Э. А. Колесникова – Инженерная графика

О. В. Локтев – Краткий курс начертательной геометрии

С. К. Боголюбов, А. В. Воинов - Черчение

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...