Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Поршень двигателя с непосредственным впрыском топлива автомобиля VOLKSWAGEN с системой управления двигателя FSI

Некоторые примеры различных типов поршней

 

Поршень с вытеснителем и выемками клапанов

 

Поршень с вытеснителем и выемками клапанов

 

Поршень с плоским днищем

 

Поршень с плоским днищем

 

Поршень с плоским днищем и выемками для клапанов

 

Поршень с плоским днищем и с выемками клапанов. Этот двигатель имеет четыре клапана на цилиндр.

 

Поршень с углублённым днищем

 

Поршень с углублённым днищем и с выемками под четыре клапана. Для уменьшения сил трения на поверхность юбки поршня нанесено антифрикционное покрытие.

 

Поршень бензинового двигателя

 

Поршень современного бензинового двигателя с графитовым антифрикционным покрытием на юбке.

 

Поршень дизельного двигателя

Поршень современного дизельного двигателя
1. Масляный охлаждающий канал
2. Камера сгорания в днище поршня
3. Днище поршня
4. Стальное кольцо для канавки первого компрессионного кольца
5. Первое компрессионное кольцо
6. Второе компрессионное кольцо
7. Маслосъёмное кольцо
8. Масляная форсунка
9. Отверстие в головке шатуна для подвода масла к поршневому пальцу
10. Шатун
11. Поршневой палец
12. Стопорное кольцо поршневого пальца
13. Третья перегородка поршневых колец
14. Вторая перегородка поршневых колец
15. Верхняя перегородка поршневых колец (жаровой пояс)

Камера сгорания находится непосредственно в днище поршня.

 


Поршень - канавки аккумуляции газов и лабиринтные канавки

1 – Канавка аккумуляции газов на второй перегородке
2 – Лабиринтные канавки на верхней перегородке

 

Юбка современного поршня


Направляющая часть поршня (юбка) современного двигателя сохранила только упорные поверхности.


Некоторые современные двигатели имеют поршни с очень необычной формой днища. Например, поршни бензиновых двигателей с непосредственным впрыском. Во время работы двигателя при послойном смесеобразовании, за счёт специально подобранной формы днища поршень двигаясь вверх на такте сжатия поршень, направляет богатую часть топливовоздушной смеси на свечу зажигания. При этом в остальной части камеры сгорания может находиться очень бедная смесь.

 

Поршень двигателя с непосредственным впрыском топлива автомобиля VOLKSWAGEN с системой управления двигателя FSI

Поршень системы FSI

 

FSI – Направление потока смеси

 

Очень своеобразную форму имеют поршни двигателей автомобиля VOLKSWAGEN с расположением цилиндров VR и W. У этих двигателей днище поршня в одной плоскости не перпендикулярно оси поршня. Но все остальные детали поршня ось поршневого пальца и канавки поршневых колец строго перпендикулярны оси поршня.

 

Поршень RV-образного двигателя

Ранее отмечалось, во время работы двигателя поршень совершает возвратно поступательные движения с большой средней скоростью и с очень высокими знакопеременными ускорениями, следовательно, для уменьшения сил инерции конструктор должен стремиться сделать поршень, как и все остальные детали, совершающие возвратно-поступательное движение, как можно легче. Способов это сделать всего два, это применение материалов и низким удельным весом, и уменьшения общего количества материала, то есть удаление излишнего материала. Но удаление излишнего материала снижает прочность конструкции, чем деталь массивней, тем легче обеспечить её жесткость и теплоёмкость. Крайне не желательно деформация формы поршня под воздействием механических и температурных нагрузок.
Во время работы двигателя поршень контактирует с другими деталями, стенками цилиндра, поршневыми кольцами и поршневым пальцем. Для обеспечения эффективной работы двигателя необходимо обеспечит точные зазоры между всеми этими деталями. Но все эти детали изготавливаются из различных материалов и, соответственно, имеют различные коэффициенты температурного расширения. Поршень конструируется так, что после прогрева двигателя до нормальной рабочей температуры все зазоры между движущимися деталями были минимальными и соответствовали расчётным.
Вообще наружная форма и размеры поршня должны соответствовать форме цилиндра. При изготовлении стремятся придать отверстию цилиндра строгие геометрические формы. Но, например, неправильная затяжка болтов крепления головки блока цилиндров, может сильно исказить первоначальную форму отверстия цилиндра. Поэтому, при ремонте двигателя всегда строго соблюдайте рекомендованные моменты затяжки всех резьбовых соединений.


Наружная форма поршня конструируется так, чтобы после прогрева двигателя поршень приобрёл форму строго цилиндра, поэтому при изготовлении поршня в его форму умышленно вносятся некоторые искажения, которые устраняются по мере прогрева двигателя. На холодном двигателе зазор между поршнем и стенками цилиндра увеличен. При прогреве двигателя до нормальной рабочей температуры тепловые зазоры между стенками цилиндра и поршнем уменьшаются и начинают соответствовать норме. Вот почему так важно поддерживать необходимую рабочую температуру двигателя.

 

Структура поршня

Поршень состоит из трёх основных частей:
1. Днище поршня
2. Головка поршня
3. Юбка поршня

Днище поршня предназначено для восприятия усилия давления газов. Головка поршня обеспечивает герметизацию подвижного соединения поршня и стенок цилиндров за счёт установленных на головку поршня поршневых колец.
Для установки поршневых колец в головке поршня делаются специальные канавки. В верхние канавки современных поршней вставляются компрессионные кольца, а нижняя канавка предназначена для установки маслосъёмного кольца. В канавке маслосъёмного кольца делаются сквозные отверстия, через которые излишнее масло отводится во внутреннюю полость поршня.

Часть поршня, расположенная ниже нижнего кольца называется юбкой поршня. Юбка поршня, иногда её называют тронковая или направляющая часть поршня, предназначена для удержания поршня в правильном направлении и восприятия боковых нагрузок. То есть юбка является направляющим элементом поршня.

Очень важным параметром поршня является высота головки поршня относительно оси поршневого пальца (4). Иногда различные модификации двигателя имеют различную степень сжатия. В производстве легче всего изменить степень сжатия изменением высоты головки поршня.

При конструировании двигателя, для уменьшения сил инерции, конструкторы стремятся сделать поршень как можно легче. Но сделать все стенки поршня одинаковой толщины не удастся. Днище поршня, для восприятия больших нагрузок, всегда делается толще, чем стенки юбки. Но и юбка в различных местах имеет различную толщину. В местах бобышек под поршневой палец юбка имеет значительное утолщение, а, учитывая то, что различные части поршня имеют различную температуру, можно предположить, что при нагреве в разных местах поршень расширяется не одинаково. Поскольку во время рабаты двигателя головка поршня имеет более высокую температуру, следовательно, расширяется больше юбки поршня, головка поршня имеет несколько меньший диаметр по сравнению с юбкой поршня.

 

Поршень – диаметр головки

Под воздействием тепловых деформаций поршня, сложенных с боковыми усилиями, действующими на поршень в перпендикулярно оси поршневого пальца, цилиндрический поршень может приобрети овальную форму. Для устранения этого явления поршень изначально делается овальным, но в противоположном направлении, по мере прогрева двигателя поршень, под воздействием боковых сил, приобретает круглую форму. Малая ось овала совпадает с направлением оси поршневого вала, а большая ось овала совпадает с направлением действующих на поршень боковых сил.

 

Овальность поршня

 

 

Но кроме овальности наружная поверхность поршня имеет некоторую конусность. Поршни современного двигателя, кроме овальности, по высоте имеют бочкообразную форму. Поэтому, поршень, кажущийся на первый взгляд простым цилиндром, имеет довольно сложную форму.

 

Сложная форма поршня


На рисунке "Сложной формы поршня" даны отклонения диаметра поршня от номинального размера. Зелёная линия показывает отклонения от номинального диаметра на различной высоте поршня со стороны торцов поршневого пальца, а розовая линия показывает отклонение номинального размера со стороны упорных поверхностей поршня. Ширина жёлтой зоны показывает овальность поршня на различной высоте.

Подбор точной наружной формы поршня очень трудная инженерная задача. В самом начале развития двигателестроения форма поршня подбиралась только опытным способом. Установив опытный поршнь в двигатель, двигатель нагружали различными нагрузками. После проведения необходимых испытаний поршень снимался и в местах, подвергшихся наибольшему износу, удалялась некоторая часть металла, и после этого проводился следующий цикл испытаний. Ели в результате излишне снятого металла поршень разрушался, толщину стенок или форму поршня изменяли и заново производили полный цикл испытаний. В результате продолжительных испытаний добивались наилучшей формы поршня для данного двигателя. По мере накопления опыта точная форма поршня стала определяться расчётным способом. Но даже сейчас, когда специальная компьютерная программа, может прочитать оптимальную форму поршня быстро, с высокой степью точности и с учётом всех, воздействующих на поршень температурных и механических факторов, проводится обязательное испытание поршней под различной нагрузкой.


Другим способом терморегулирования поршня, то есть направленное изменение формы поршня под воздействием температуры является вплавление в алюминиевое тело стальных термостабилизирующих пластин. Термостбилизирующие пластины, при полном прогреве поршня, позволяют снизить радиальное расширение поршня приблизительно в два раза по сравнению с поршнем, полностью изготовленным из алюминиевого сплава.

 

Термостабилизирующие пластины

Термостбилизирующие пластины или кольца являются очень эффективным средством управления расширения поршня в необходимом направлении. Правда эти элементы имеют большое ограничение они могут быть вставлены только в литые поршни, но нет возможности установки этих элементов в современные кованные поршни.

Как преднамеренные изменения формы поршня, так и вставка в поршень термостабилизирующих стальных пластин предназначены для обеспечения стабильного минимального теплового зазора между поршнем (юбкой поршня) и стеками цилиндра. Обычно тепловой зазор между юбкой поршня и стенками цилиндра автомобильного двигателя лежит в диапазоне 0,0254 – 0,0508 мм.

Боковые силы, приложенные к поршню

 


Во время работы двигателя шатун постоянно, кроме положения поршня в ВМТ и НМТ находится под некоторым углом к оси цилиндра, причем этот угол постоянно изменяется. Поэтому сила, приложенная к поршневому пальцу, раскладывается на две. Одна сила действует в направлении шатуна, а вторая сила действует в направлении перпендикулярном оси цилиндра. Эта сила прижимает поршень к стенке цилиндра.
При движении поршня вверх на такте сжатия сжимаемый воздух оказывает сопротивление перемещению поршня. Часть это силы прижимает поршень к правой стенке цилиндра, если смотреть со стороны передней части двигателя.
Во время рабочего хода расширяющиеся газы с большой силой давят на поршень. Часть этой силы расходуется на прижатие поршня к левой стенке цилиндра. Не стоит думать, что эти силы незначительны. Боковая сила, прижимающая поршень к стенке цилиндра приблизительно равна 10% - 12% процентов, от силы, действующей в направлении оси цилиндра. Ранее упоминалось, что во время работы двигателя на днище поршня среднего легкового автомобиля действует сила в несколько тонн, следовательно, сила, прижимающая поршень к боковой стенке может быть равна нескольким сотням килограмм. Поскольку сила, действующая на поршень во время рабочего хода в направлении оси цилиндра значительно выше, силы, действующей на поршень во время такта сжатия, поверхность, к которой прижимается поршень, во время такта рабочего хода, называется основной упорной поверхностью.

Из всего сказанного вытекает, что при прохождении поршнем ВМТ между тактами сжатия и рабочего хода происходит перемещение поршня от вспомогательной упорной поверхности к основной. Поскольку на поршень действуют большие силы, а все процессы в двигателе происходят очень быстро, перемещение поршня происходи в форме удара. Для уменьшения силы удара при перекладке поршня ось поршневого пальца (вернее ось отверстия в бобышках поршня под поршневой палец) смещена в сторону основной упорной поверхности.

 

Перекладывание поршня

При движении поршня вверх на такте сжатия, давление сжимаемого воздуха оказываемого на днище поршня преобразуется в силу, направленную перпендикулярно днищу поршня. Поскольку шатун находится под некоторым углом к оси поршня, возникает нормальная сила, прижимающая поршень к вспомогательной упорной поверхности (2).
Сила, возникающая в результате воздействия давления, равна произведению давления, умноженного на площадь, на которую действует давление. Поскольку ось поршневого пальца смещена в сторону основной упорной поверхности (1), площадь правой половины поршня стала несколько больше площади левой половины. В результате чего сила, действующая на правую половину поршня, будет больше силы, действующей на левую половину поршня. Поэтому, когда поршень остановится в ВМТ, в результате разности этих сил, нижняя часть поршня переместится к основной упорной поверхности. А как только давление в камере сгорания начнёт увеличиваться, произойдёт полная перекладка поршня к основной упорной поверхности. Это позволяет произвести перекладку поршня без ударных нагрузок. При движении поршня в низ, при изменении угла шатуна к оси цилиндра и возрастания давления в цилиндре поршень оказывает давление на основную упорную поверхность (1).
Обычно смещение оси поршневого пальцы относительно оси поршня в автомобильных двигателях лежит в диапазоне 1,0 – 2,5 мм.
Учитывая имеющиеся смещения оси поршневого пальца, поршень допускается устанавливать только в одном направлении. Неправильна установка поршня приведёт к появлению ударных звуков во время работы двигателя. Обычно на днище поршня имеется метка, указывающая правильное направление установки поршня. Перед ремонтом двигателя тщательно изучите руководство по ремонту.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...