Раздел 7. Неопределенный интеграл (НИ)
Раздел 1. Линейная алгебра. Векторная алгебра.
24. Вектор как направленный отрезок. Декартов прямоугольный базис и декартова прямоугольная система координат (д.п.с.к.). 25. Радиус-вектор точки, координаты точки в д.п.с.к.
26. Векторное произведение векторов в Е 3, его свойства, механический смысл. 27. Смешанное произведение векторов в Е 3, его свойства. 28. Условия ортогональности, коллинеарности, компланарности векторов в Е 3. Раздел 2. Аналитическая геометрия 1. Понятие уравнения геометрического образа. 2. Плоскость, нормальный вектор плоскости. Общее уравнение плоскости и его частные случаи. 3. Угол между плоскостями, условие перпендикулярности и параллельности плоскостей, расстояние от точки до плоскости. Плоскость в Еn, n >3. 4. Прямая в Е 3, ее направляющий вектор. Общие, канонические, параметрические уравнения прямой. Луч и отрезок. 5. Угол между прямыми в Е 3. Перпендикулярные, параллельные, пересекающиеся и скрещивающиеся прямые. Расстояние от точки до прямой в Е 3. Прямая, луч и отрезок в Еn, n >3. 6. Угол между прямой и плоскостью, условия параллельности и перпендикулярности прямой и плоскости. Точка пересечения прямой и плоскости, принадлежность прямой плоскости. 7. Прямая на плоскости, как частный случай прямой в Е 3 и как линия пересечения плоскости с плоскостью ОХУ. 8. Уравнение прямой на плоскости с угловым коэффициентом. Раздел 3. Введение в анализ 1. Функция одной переменной, способы задания. Основные элементарные функции, их графики. Сложная функция. 2. Предел функции. 3. Бесконечно малая функция и ее свойства. 4. Бесконечно большая функция, связь с бесконечно малой. 5. Основные теоремы о пределах функции (критерий существования предела, единственность, предел суммы, произведения, частного). 6. Первый и второй специальные пределы. 7. Сравнение бесконечно малых функций. 8. Непрерывность функции в точке, на интервале, отрезке. Основные теоремы о непрерывных функциях (непрерывность основных элементарных функций, сложной функции). 9. Свойства функций непрерывных на замкнутом отрезке, абсолютный экстремум функции.
Раздел 4. Производная функции одной переменной 1. Приращение аргумента и приращение функции. Задача о касательной к плоской кривой. 2. Производная функции, ее геометрический и физический смысл. Уравнение касательной и нормали к кривой. 3. Необходимое условие дифференцируемости функции. 4. Основные правила и формулы дифференцирования. 5. Дифференциал функции, его геометрический смысл, свойства, применение к приближенным вычислениям. 6. Производные и дифференциалы высших порядков. Раздел 5. Приложения производной 1. Теоремы Ролля, Лагранжа. 2. Монотонность функции, достаточное условие монотонности. 3. Определение локального максимума (минимума) функции, экстремума функции. 4. Необходимое условие экстремума дифференцируемой функции, непрерывной функции. 5. Первый и второй достаточный признак экстремума. 6. Абсолютный экстремум функции на отрезке. 7. Выпуклость функции, точки перегиба. Достаточное условие выпуклости функции. 8. Достаточное условие точки перегиба. Необходимое условие. 9. Асимптоты графика функции вертикальные, наклонные. 10. Правило Лопиталя. Раздел 6. Функции нескольких переменных (ФНП) 1. Определения функций 2-х, 3-х и n переменных, область определения и способы задания. 2. График функции 2-х переменных. Линии и поверхности уровня. 3. Предел и непрерывность ФНП. 4. Частные и полные приращения функции 2-х переменных. Частные производные, их геометрический смысл. 5. Полное приращение функции. Теорема о полном приращении функции. Функция, дифференцируемая в точке и области. Необходимое условие дифференцируемости функции (теорема). 6. Достаточное условие дифференцируемости функции (теорема). Полный дифференциал. 7. Дифференцирование сложной функции. 8. Инвариантность формы первого дифференциала (теорема). 9. Неявно заданная функция, ее дифференцирование. 10. Скалярное поле, его эквипотенциальные поверхности. Производная по направлению. 11. Градиент функции скалярного поля. Теорема о проекции вектора градиента на направление. 12. Теорема о касательных, проведенных к линиям, лежащим на поверхности уровня. Касательная плоскость и нормаль к поверхности, их уравнения.
13. Геометрический смысл дифференциала функции 2-х переменных. 14. Частные производные высших порядков. Теорема о равенстве смешанных частных производных. Полный дифференциал второго порядка. 15. Экстремум ФНП, его необходимое условие (теорема). 16. Матрица Гессе. Положительно и отрицательно определенные матрицы. Критерий Сильвестра (теорема). 17. Достаточные условия экстремума ФНП (теорема). Экстремум функции 2-х переменных. 18. Условный экстремум. Функция Лагранжа, метод неопределенных множителей Лагранжа. Раздел 7. Неопределенный интеграл (НИ) 1.Первообразная. Теорема о первообразной. НИ, его геометрический смысл. 2. Свойства НИ. 3. Теорема о замене переменной в НИ. 4. Таблица основных интегралов. 5. Интегрирование по частям в НИ. 6. Рациональные дроби, правильные и неправильные дроби. Интегрирование неправильных дробей (теорема). 7. Простейшие рациональные дроби, их интегрирование. Теорема о разложении правильной дроби на сумму простейших дробей. 8. Интегрирование тригонометрических функций. 9. Интегрирование простейших иррациональностей. 10. Тригонометрические подстановки.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|