Energy transfer within the earth-atmosphere system
Стр 1 из 19Следующая ⇒ ББК 81.2я7 Федосеева Н.В., Игнатьева Н.В., Седунова О.Ю., Серова Л.П. //Английский язык для магистров гидрометеорологических специальностей. Учебное пособие – СПб.: РГГМУ, 2013. – 220 с.
ISBN 978-5м -86813-306-0 Рецензент: кафедра иностранных языков Северо-Западной академии Под ред. Н.В. Федосеевой.
Учебное пособие предназначено, главным образом, для магистров гидрометеорологических и смежных специальностей, готовящихся к сдаче экзамена по английскому языку. Оно представляет собой комплекс уроков, ориентированных на развитие навыков перевода, подробного и краткого пересказа текстов, подобранных из оригинальных англоязычных источников и организованных по их целевому назначению, грамматического справочника и ряда приложений справочного характера. Тематика подобранного лексико-грамматического материала, охватывающего широкий круг дисциплин о Земле, компактный грамматический справочник и другие справочные материалы могут представлять интерес для студентов, магистров, а также для широкого круга читателей, имеющих дело с литературой на английском языке.
Fedoseyeva, N.V., Ignatyeva, N.V., Sedunova, O.Yu., Serova, L.P. A manual of English for Master’s students of Hydrometeorology. – St Petersburg: RSHU Publishers, 2013. – 220 pp.
The handbook focuses on some English grammar and vocabulary basics as well as text translation and retelling techniques with a number of exercises and texts provided to develop the skills acquired. The teaching materials are built on the authentic books, articles and reference sources. The handbook was written with Master students of environmental studies in mind. It could be also useful for all those who are interested in Earth and Clime Change sciences.
ISBN 978-5-86813-306-0 © Федосеева Н.В., Игнатьева Н.В., © Российский государственный гидрометеорологический университет (РГГМУ), 2013 СОДЕРЖАНИЕ
CONTENTS
Предисловие Учебное пособие предназначено, главным образом, для подготовки магистров, чьей специальностью являются науки о Земле, к сдаче экзамена по английскому языку. Тематика подобранного текстового материала, охватывающая широкий круг дисциплин о Земле, а также методические рекомендации по переводу и пересказу англоязычных научно-технических текстов, грамматический справочник, затрагивающий основные лексико-грамматические проблемы английского языка, и другие материалы справочного характера дают возможность использовать предлагаемое пособие для обучения студентов и магистров смежных специальностей. По этой же причине пособие может представлять интерес и для широкого круга читателей, имеющих дело с научной литературой на английском языке. Пособие рассчитано на средний уровень владения английским языком. Пособие состоит из восьми основных разделов, отражающих различные научные дисциплины, содержащих тексты для письменного перевода, подробного и краткого пересказа текстов, грамматического справочника и приложений. Все разделы дополнены упражнениями, направленными на закрепление полученных навыков.
Блок 1 SOLAR RADIATION AND GLOBAL ENERGY BUDGET Lesson 1
Упражнение 1. Прочитайте заголовок приводимого ниже текста. Подумайте, о чем в нем может идти речь. Приведите 10–15 слов, которые могут, с Вашей точки зрения, встретиться в тексте. Прочитайте и переведите текст.
Solar radiation The prime source of the energy injected into our atmosphere is the sun, which is continually shedding part of its mass by radiating waves of electromagnetic energy and high-energy particles into space. This constant emission is important because it represents in the long run almost all the energy available to the earth (except for a small amount emanating from the radioactive decay of earth minerals). The amount of energy received by the earth, assuming for the moment that there is no interference from the atmosphere, is affected by four factors: solar output, the sun-earth distance, the altitude of the sun, and day length. 1 Solar output Solar energy, which originates from nuclear reactions within the sun's hot core (16 × 106 K), is transmitted to the sun's surface by radiation and hydrogen convection. Visible solar radiation (light) comes from a 'cool' (~6,000 K) outer surface layer called the photosphere. Temperatures rise again in the outer chromosphere (10,000 K) and corona (106 K), which is continually expanding into space. The outflowing hot gases (plasma) from the sun, referred to as the solar wind (with a speed of 1.5 × 106 km hr-1), interact with the earth's magnetic field and upper atmosphere. The earth intercepts both the normal electromagnetic radiation and energetic particles emitted by the sun during solar flares. The sun behaves virtually as a black body, meaning that it both absorbs all energy received and in turn radiates energy at the maximum rate possible for a given temperature. The energy emitted at a particular wavelength by a perfect radiator of given temperature is described by F = бT4 where б = 5.67 × 10–8 W m-2 K-2 (the Stefan-Boltzmann constant), i.e. the energy emitted (F) is proportional to the fourth power of the absolute temperature of the body (T).
The total solar output to space, assuming a temperature of 5,760 K for the sun, is 3.84 × 1026 W, but only a tiny fraction of this is intercepted by the earth, because the energy received is inversely proportional to the square of the solar distance (150 million km). The energy received at the top of the atmosphere on a surface perpendicular to the solar beam for mean solar distance is termed the solar constant. The most recent satellite measurements indicate a value of about 1,368 Wm-2. For solar radiation, 8 per cent is ultraviolet and shorter wavelength emission, 39 per cent visible light (0.4–0.7 µ m) and 53 per cent near-infrared (>0.7 µ m). The mean temperature of the earth's surface is about 288 K (15 °C) and of the atmosphere about 250 K (-23 °C). Gases do not behave as black bodies, the absorption bands in the atmosphere cause its emission to be much less than that from an equivalent black body. The wavelength of maximum emission varies inversely with the absolute temperature of the radiating body. Thus solar radiation is very intense and is mainly short-wave between about 0.2 and 4.0 мm, with a maximum (per unit wavelength) at 0.5 µm, whereas the much weaker 'terrestrial radiation has a peak intensity at about 10 µm and a range of about 4 to 100 µm (1 µm = 1 micrometre = 10-6 m).
Satellite data show that the solar constant undergoes small periodic variations of about 0.1 per cent, related to sunspot activity. Sunspots are dark (i.e. cooler) areas visible on the sun's surface. Their number and positions change in a regular manner, known as the sunspot cycles. These cycles have wavelengths averaging 11 years (varying in length between 8 and 13 years), the 22-year (Hale) magnetic cycle, much less importantly 37.2 years (18.6 years – the luni-solar oscillation) and possibly 80–90 years. Between the thirteenth and eighteenth centuries, sunspot activity was generally low, except for the periods AD 1350–1400, and 1600–1645. Output within the ultraviolet part of the spectrum shows considerable variability, with up to twenty times more ultraviolet radiation emitted at certain wavelengths during a sunspot maximum than during a sunspot minimum. The relation between sunspot activity and terrestrial temperatures is a matter of some dispute. However, some authorities believe that prolonged time- spans of sunspot minima (e.g. AD 1645-1705, the Maunder Minimum) and maxima (e.g. 1895–1940 and post 1970) can produce significant global cooling and warming, respectively. Shorter-term relationships are more difficult to support, but mean annual temperatures have been correlated with the combined 10-11 and 18.6-year solar cycles. Satellite measurements during the 1980s, the latest solar cycle, show a small decrease in solar output as sunspot number approaches its minimum, and a subsequent recovery. Although sunspot areas are cool spots, they are surrounded by bright areas of activity known as faculae, which have higher temperatures; the net effect is for solar output to vary in parallel with the number of sunspots. Thus, the solar 'irradiance' decreases by about 1.5 Wm-2 from sunspot maximum to minimum. In the long term, assuming that the earth behaves as a black body, a long-continued difference of 2 per cent in the solar constant could change the effective mean temperature of the earth's surface by as much as 1.2 °C; however, the observed fluctuations of about 0.1 per cent would change the mean global temperature by ≤0.06 °C, based on calculations of radiative equilibrium.
Упражнение 2. Прочитайте следующие слова и определите их соответствия Radiation, mass, electromagnetic, moment, solar, photosphere, chromosphere, corona, plasma, fraction, proportional, perpendicular, constant, ultraviolet, infrared, peak, intensity, periodical, regular, manner.
Упражнение 3. Найдите в тексте из упражнения 1 слова с суффиксом ~ly. Определите, какими частями речи они являются. Упражнение 4. В правой колонке найдите русские эквиваленты следующих английских словосочетаний:
Упражнение 5. Заполните таблицу, вставив недостающие части речи.
Упражнение 6. Вставьте в пропуски в тексте соответствующие предлоги: at, with, of, to, by, throughout, between, in, per, through Altitude of the sun The altitude of the sun (i.e. the angle between its rays and a tangent to the earth's surface at the point of observation) also affects the amount... solar radiation received …the surface … the earth. The greater the sun's altitude, the more concentrated is the radiation intensity … unit area … the earth's surface and the longer is the path length …the beam… the atmosphere, which increases the atmospheric absorption. There are, in addition, important variations … solar altitude …the proportion… radiation reflected … the surface, particularly … the case… a water surface. The principal factors that determine the sun's altitude are, … course, the latitude … the site, the time … day and the season. … the June solstice, the sun's altitude is a constant 23 1/2 ° … the day … the North Pole and the sun is directly overhead … noon … the Tropic … Cancer (23 1/2 °N).
Упражнение 7. Прочитайте текст и найдите в нем ответы на следующие вопросы: 1. Что является причиной сезонных изменений в поступлении солнечной энергии? 2. Когда Земля получает больше энергии от Солнца – в январе или в июле? 3. В каком полушарии зима должна быть теплее, а в каком – лето? 4. Почему в реальности наблюдается обратная картина? 5. В каком полушарии теплое полугодие более продолжительное? (Контрольное время – 7 минут)
Distance from the sun The annually changing distance of the earth from the sun produces seasonal variations in our receipt of solar energy. Owing to the eccentricity of the earth's orbit around the sun, the receipt of solar energy on a surface normal to the beam is 7 per cent more on 3 January at the perihelion than on 4 July at the aphelion. In theory (that is, discounting the interposition of the atmosphere and the difference in degree of conductivity between large land and sea masses), this difference should produce an increase in the effective January world surface temperatures of about 4 °C, over those of July. It should also make northern winters warmer than those in the southern hemisphere, and southern summers warmer than those in the northern hemisphere. In practice, atmospheric heat circulation and the effects of continentality substantially mask this global tendency, and the actual seasonal contrast between the hemispheres is reversed. Moreover, the northern summer half-year (21 March-22 September) is five days longer than the southern hemisphere summer (22 September-21 March). This difference slowly changes; about 10,000 years ago the aphelion occurred in the northern hemisphere winter, and northern summers received 3-4 per cent more radiation than today. This same pattern will return about 10,000 years from now. Упражнение 8. Выберите из текста Distance from the sun 10–15 основных,
Упражнение 9. В каждом предложении текста Distance from the sun найдите подлежащее и сказуемое. Определите время и залог сказуемого.
Упражнение 10. Переведите текст письменно. (Контрольное время – 25 минут) Length of day The length of daylight also affects the amount of radiation that is received. Obviously, the longer the time that the sun shines the greater is the quantity of radiation that a given portion of the earth will receive. At the equator; for example, the day length is close to 12 hours in all months, whereas at the poles it varies between 0 and 24 hours from winter (polar night) to summer. The polar regions receive their maximum amounts of solar radiation during their summer solstices, which is the period of continuous day. The amount received during the December solstice in the southern hemisphere is theoretically greater than that received by the northern hemisphere during the June solstice, due to the previously mentioned elliptical path of the earth around the sun. The equator has two radiation maxima at the equinoxes and two minima at the solstices, due to the apparent passage of the sun during its double annual movement between the northern and southern hemispheres.
Упражнение 11. Составьте 5 общих вопросов к тексту Length of day.
Упражнение 12. (Парная работа) Ответьте на вопросы, составленные в упражнении 11. Lesson 2 Упражнение 1. Подумайте и приведите 10–15 слов, которые могут встретиться в тексте. Прочитайте и переведите текст.
Energy transfer within the earth-atmosphere system The distribution of solar radiation is often described as if it were all available at the earth's surface. This is, of course, an unreal view because of the effect of the atmosphere on energy transfer. Heat energy can be transferred by the three following mechanisms: 1 Radiation: Electromagnetic waves transfer energy (both heat and light) between two bodies, without the necessary aid of an intervening material medium, at a speed of 300 × 106 m s-1 (i.e. the speed of light). This is so with solar energy through space, whereas the earth's atmosphere allows the passage of radiation only at certain wavelengths and restricts that at others. Radiation entering the atmosphere may be absorbed by atmospheric gases in certain wavelengths but most shortwave radiation is transmitted without absorption. Scattering occurs if the direction of a photon of radiation is changed by interaction with atmospheric gases and aerosols. Two types of scattering are distinguished. For gas molecules smaller than the radiation wavelength (λ) Rayleigh scattering occurs in all directions and is proportional to (1/λ4). As a result, the scattering of blue light (λ@0.4µm) is an order of magnitude (i.e.×10) greater than that of red light (λ @ 0.7 µm), thus creating the daytime blue sky. However, when water droplets or aerosol particles, with similar sizes (0.1-0.5 µm radius) to the radiation wavelength, are present, most of the light is scattered forward. This Mie scattering gives the greyish appearance of polluted atmospheres. Within a cloud, or between low clouds and a snow-covered surface, radiation undergoes multiple scattering. In the latter case, the 'white out' conditions typical of polar regions in summer (and mid-latitude snowstorms) are experienced, when surface features and the horizon become indistinguishable. 2 Conduction: By this mechanism, the heat passes through a substance from point to point by means of the transfer of adjacent molecular motions. Since air is a poor conductor, this type of heat transfer can be virtually neglected in the atmosphere, but it is important in the ground. 3 Convection: This occurs in fluids (including gases), which are able to circulate internally and distribute heated parts of the mass. The low viscosity of air and its consequent ease or motion makes this the chief method of atmospheric heat transfer. It should be noted that forced convection (mechanical turbulence) occurs due to the development of eddies as air flows over uneven surfaces, even when there is no surface heating to set up free (thermal) convection. Convection transfers energy in two forms. The first is the sensible heat content of the air (called enthalpy by physicists), which is transferred directly by the rising and mixing of warmed air. It is defined as cpT, where T is the temperature and cp (= 1,004 J kg-1 K-1) is the specific heat at constant pressure (the heat absorbed by unit mass for unit temperature increase). Sensible heat is also transferred by conduction. The second form of energy transfer by convection is indirect, involving latent heat. Here, there is a phase change but no temperature change. Whenever water is converted into water vapour by evaporation (or boiling), heat is required. This is referred to as the latent heat of vaporization (L). At 0 °C, L is 2.50 x 106 J kg-1 of water. More generally, where T is in °C. When water condenses in the atmosphere, the same amount of latent heat is given off as is used for evaporation at the same temperature. Similarly, for melting ice at 0 °C, the latent heat of fusion is required, which is 0.335 × 106 J kg-1. If ice evaporates without melting, the latent heat of this sublimation process is 2.83 × 106 J kg-1 at
Упражнение 2. Найдите в тексте термины, соответствующие следующим выражениям.
Упражнение 3. Словам в левой колонке подберите антонимы в правой колонке.
Упражнение 4. Переведите следующие слова на русский язык. Without whenever so by both … and … by means of uneven forward most of smaller than more generally similarly internally or as a result Упражнение 5. Из слов в правой и левой колонке образуйте цепочки существительных. heat change energy feature radiation development water interaction surface energy phase transfer eddy droplet gas wavelength
Упражнение 6. Образуйте причастия 1 и 2 рода из следующих глаголов. Найдите примеры таких причастий в тексте из упражнения 1. Restrict, occur, undergo, circulate, distribute, flow, transfer, condense. Упражнение 7. Прочитайте текст. (Контрольное время – 5 минут)
Effect of the atmosphere Solar radiation is virtually all in the short-wavelength range, less than 4 µm. About 18 per cent of the incoming energy is absorbed directly by ozone and water vapour. Ozone absorption is concentrated in three solar spectral bands (0.20-0.31, 0.31-0.35 and 0.45-0.85 µm) while water vapour absorbs to a lesser degree in several bands between 0.9 and 2.1 мm. Solar wavelengths shorter than 0.285 µm scarcely penetrate below 20 km altitude, whereas those >0.295 µm reach the surface. Thus, the 3 mm (equivalent) column of stratospheric ozone attenuates ultraviolet radiation almost entirely except for a partial window around 0.20 µm, where radiation reaches the lower stratosphere. About 30 per cent is immediately reflected back into space from the atmosphere, clouds and the earth's surface, leaving approximately 70 per cent to heat the earth and its atmosphere. Of this, the greater part eventually heats the atmosphere, but much of this heat is received secondhand by the atmosphere via the earth's surface. The ultimate retention of this energy by the atmosphere is of prime importance, because if it did not occur the average temperature of the earth's surface would fall by some 40 °C, obviously making most life impossible. The surface absorbs almost half of the incoming energy available at the top of the atmosphere and reradiates it outwards as long (infrared) waves of greater than 3 µm. Much of this reradiated long-wave energy can be absorbed by the water vapour, carbon dioxide and ozone in the atmosphere, the rest escaping through atmospheric windows back into outer space, principally between 8 and 13 µm.
Упражнение 8. Ответьте на следующие вопросы, исходя из информации 1. Какие газы наиболее интенсивно поглощают приходящее солнечное излучение? 2. Излучение в каком диапазоне длин волн не проникает ниже 3. Какая часть приходящего солнечного излучения отражается атмосферой, облаками и поверхностью земли? 4. Что называется вторичным тепловым излучением земли? Упражнение 9. Выпишите 10 ключевых слов из текста в упражнении 8.
Упражнение 10. Письменно переведите текст. (Контрольное время – 30 минут)
Almost all energy affecting the earth is derived from solar radiation, which is of shortwave-length (<4 мm) due to the high temperature of the sun (~6,000 K) (i.e. Wien's Law). The solar constant has a value of approximately 1,370 W m-2. The sun and the earth radiate almost as black bodies (Stefan's Law, F = бТ4), whereas the atmospheric gases do not. Terrestrial radiation, from an equivalent black body, amounts to only about 270 W m-2 due to its low radiating temperature (263 K), and it is infrared (longwave) radiation between 4 and 100 µ m. Water vapour and carbon dioxide are the major absorbing gases for infrared radiation, whereas the atmosphere is largely transparent to solar radiation (the greenhouse effect). Trace gas increases are now augmenting the 'natural' greenhouse effect (33 K). Solar radiation is lost by reflection, mainly from clouds, and by absorption (largely by water vapour). The planetary albedo is 31 per cent; 48 per cent of the extraterrestrial radiation reaches the surface. The atmosphere is heated primarily from the surface by the absorption of terrestrial infrared radiation and by turbulent heat transfer. Temperature usually decreases with height at an average rate of about 6.5 °C/km in the troposphere. In the stratosphere and thermosphere, it increases with height due to the presence of radiation absorbing gases. The excess of net radiation in lower latitudes leads to a poleward energy transport from tropical latitudes by ocean currents and by the atmosphere. This is in the form of sensible heat (warm air masses/ocean water) and latent heat (atmospheric water vapour). Air temperature at any point is affected by the incoming solar radiation and other vertical energy exchanges, surface properties (slope, albedo, heat capacity), land and sea distribution and elevation, and also by horizontal advection due to air mass movements and ocean currents.
Блок 2 ATMOSPHERIC COMPOSITION, STRUCTURE Lesson 1 Упражнение 1. Прочитайте заголовок приводимого ниже текста. Подумайте, о чем в нем может идти речь. Приведите 10–15 слов, которые могут, с Вашей точки зрения, встретиться в тексте. Прочитайте и переведите текст.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|