Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Другие свойства атмосферы и воздействие




Реферат

Атмосфера

 

Выполнила студентка

1го курса

Института народов севера

Иванова Лерсана

 

Санкт-Петербург 2014.

 

Содержание

Введение………………………………………………………………………..3

Происхождение атмосферы…………………………………………………..4

Состав атмосферы…………………………………………………………….5

Строение атмосферы………...………………………………………………..7

Другие свойства атмосферы и воздействие на человеческий организм….10

Виды загрязнений атмосферы……………………………………………….13

Экологические проблемы атмосферы………………………………………16

Самоочищение атмосферы…………………………………………………..17

Заключение……………………………………………………………………18

Литература…………………………………………………………………….19

 

Введение.

 

Возможность жизни на любой планете зависит, прежде всего, от того, есть ли там атмосфера, т. е. воздушная оболочка. Только благодаря наличию атмосферы возникла и могла развиться жизнь на Земле. Это она словно куполом прикрыла Землю, с её растительным и животным миром, защищая от пагубного дейст­вия ультрафиолетовой и космической радиации, щедро посылае­мых Солнцем и Вселенной, а также от всевозможных заряженных частиц, излучаемых космическим пространством. Пропуская лучи Солнца, атмосфера задерживает часть радиации, отражаемой земной поверхностью, а также излучаемой последней, как всяким нагретым телом. Это предохраняет Землю от охлаждения и рез­ких колебаний температуры в течение суток.

Атмосфера – воздушная оболочка между земной корой и космосом, является внешней по отношению к главному источнику энергии (солнечной). Атмосфера составляет по массе одну миллионную часть Земли, т. е. масса атмосферы примерно равна 5,15 * 1015т.

Атмосфера представляет собой физическую смесь газов, жидкости (капли воды), твёрдых веществ (пыль, снег, град), аэрозолей.

 

Происхождение атмосферы.

 

Так как водород и гелий, – наиболее распространённые элементы в космосе, то они, несомненно, входили и в состав протопланетного газово-пылевого облака, из которого возникла Земля. Вследствие очень низкой температуры этого облака (10-20К) самая первая земная атмосфера (если для её удержания масса Земли была достаточна) только и могла состоять из водорода и гелия, так как все другие вещества, из которых слагалось облако, могли быть только в твёрдом состоянии.

 

Затем последовал разогрев Земли: тепло порождалось гравитационным сжатием планеты и распадом внутри неё радиоактивных элементов. Это послужило стимулом двух процессов: постепенной диссипации водорода и гелия и дегазации мантии Земли. Земля потеряла водородно-гелиевую атмосферу и создала свою собственную первичную атмосферу из газов, выделившихся из её недр.

Следующий этап развития атмосферы был переходным – от абиогенного к биогенному, от восстановительных условий к окислительным. Главными составными частями газовой оболочки Земли стали N2, CO2, CO, в качестве побочных примесей – СН4, О2. Кислород возникал, по-видимому, в результате диссоциации молекул воды в верхних слоях атмосферы под действием ультрафиолетовых лучей Солнца; мог он выделяться и из тех окислов, из каких состояла земная кора. Но подавляющая часть его уходила вновь на окисление минералов земной коры (в докембрийских отложениях есть окислы железа и сульфатов кальция) или на окисление водорода и его соединений в атмосфере. Оттого свободного кислорода в атмосфере было мало.

Последний этап развития атмосферы связан с появлением жизни на Земле и, стало быть, с возникновением механизма фотосинтеза. Постепенно содержание свободного кислорода – на этот раз биогенного – стало возрастать. Параллельно с этим атмосфера почти полностью потеряла двуокись углерода.

 

 

Состав атмосферы.

 

Воздух – смесь газов, отличающаяся, за исключением водяных паров, постоянством химического состава. В сухом воздухе у земной поверхности содержится (% по объёму): азот – 78,08; кислород – 20,96; аргон – 0,93; углекислый газ – 0,03. Есть в воздухе и другие газы (криптон, ксенон, неон, гелий, водород, йод, радон, метан и некоторые другие), но их содержание ничтожно – тысячные и миллионные доли процента. Таким образом, химический состав воздуха, состоящего более чем на 3/4 из азота, резко отличен от земной коры, бедной азотом.

Пять основных компонентов воздушной тропосферы – азот, кислород, аргон, углекислый газ, водяной пар – различны по своим свойствам, а отсюда – и функциональной роли в географической оболочке. Один из них – аргон – принадлежит к группе инертных газов и не оказывает сколько-нибудь заметного влияния на процессы, протекающие в географической оболочке.

Азот, самый распространённый газ в воздушной тропосфере, химически мало активен. Являясь составной частью белков и их производных, он, тем не менее, усваивается большинством живых организмов не непосредственно из воздуха, а посредством азот-фиксирующих бактерий и водорослей.

Кислород, в отличие от азота, химически очень активный эле- мент. И наличие большой массы свободного (несвязанного) кислорода в современной атмосфере представляется парадоксальным явлением. Парадокс этот находит объяснение в захоронении органического углерода в процессе фотосинтеза растений. Атмосфера питает кислородом воды океанов, озёр и рек. Специфическая функция кислорода – окисление органического вещества гетеротрофных организмов, горных пород и недоокислённых газов, выбрасываемых в атмосферу вулканами. Без кислорода не было бы разложения мёртвого органического вещества.

Углекислого газа в атмосфере немного, но его роль в функционировании географической оболочки исключительно велика. Он представляет основной строительный материал для создания органического вещества при фотосинтезе:

6СО2 + 6Н2О + Энергия = С6Н12О6 + О2.

Значение углекислого газа атмосферы для географической оболочки не ограничивается его участием в создании органического вещества. Важные последствия имеет свойство углекислого газа пропускать коротковолновую солнечную радиацию и поглощать часть теплового длинноволнового излучения, что создаёт так называемый парниковый эффект, выраженный в повышении температуры воздуха вблизи поверхности Земли.

В воздухе тропосферы всегда присутствует примесь аэрозолеймельчайших жидких и твёрдых частиц, находящихся во взвешенном состоянии. Это:

l пыль земного и космического прохождения, микрометеориты,

l метеориты и продукты их сгорания – Al, Fe, Ni (14 * 106 т/год);

l твёрдые частицы дыма и пепла от лесных пожаров, сжигания топлива, извержения вулканов – C, S;

l частицы почвы и продукты выветривания горных пород – Si, Al;

l морская соль – NaCl, KCl, CaCl2, MgCl2;

l частицы органического происхождения – бактерии, микроорганизмы (770 – 2200 Мт/год);

l выбросы цементного производства – Са;

l выбросы химических, металлургических производств – S, Pb, фенолы, хлорфторметаны, фреоны, CF2Cl2, CCl4.

Та или иная концентрация аэрозолей в атмосфере определяет её прозрачность, что сказывается на солнечной радиации, достигающей поверхности Земли. Наиболее крупные аэрозоли – ядра конденсации – способствуют превращению водяного пара в водяные капли.

 

 

Строение атмосферы.

 

Атмосфера простирается вверх на много сотен километров. Верхняя её граница, на высоте около 2000 – 3000 км, в известной мере условна, так как газы, её составляющие, постепенно разрежаясь, переходят в мировое пространство. С высотой меняются химический состав атмосферы, давление, плотность, температура и другие её физические свойства. Химический состав воздуха до высоты 100 км. существенно не меняется. Несколько выше атмосфера также состоит главным образом из азота и кислорода. Но на высотах 100 – 110 км., под действием ультрафиолетовой радиации солнца, молекулы кислорода расщепляются на атомы и появляется атомарный кислород. Выше 110 – 120 км. кислород почти весь становится атомарным. Предполагается, что выше 400 – 500 км. газы, составляющие атмосферу, также находится в атомарном состоянии.

Изменение температуры воздуха с высотой происходит также неодинаково. По характеру изменения температуры с высотой атмосфера делится на несколько сфер, между которыми располагаются переходные слои, так называемые паузы, где температура с высотой мало изменяется.

3.1.Тропосфера. Физические свойства тропосферы в значительной степени определяются влиянием земной поверхности, которая является её нижней границей. Наибольшая высота тропосферы наблюдается в экваториальной и тропической зонах. Здесь она достигает 16 – 18 км. и сравнительно мало подвергается суточным и сезонным изменениям. Над приполюсными и смежными областями верхняя граница тропосферы лежит в среднем на уровне 8 – 10 км. В средних широтах она колеблется от 6 – 8 до 14 – 16 км.

 

В тропосфере сосредоточено более 4/5 массы земной атмосферы и почти весь содержащийся в ней водяной пар. Кроме того, от поверхности земли до верхней границы тропосферы температура понижается в среднем на 0,65° на каждые 100 м. Это объясняется тем, что воздух в тропосфере нагревается и охлаждается преимущественно от поверхности земли.

 

3.2. Стратосфера простирается от высот 8 – 17 до 50 – 55 км.Онабыла открыта в начале нашего века. По физическим свойствам стратосфера резко отличается от тропосферы уже тем, что темпера- тура воздуха здесь, как правило, повышается в среднем на 1°–2° на километр поднятия и на верхней границе, на высоте 50 – 55 км, становится даже положительной: +10о. Повышение температуры в этой сфере вызвано наличием здесь озона (О3), который образуется под влиянием ультрафиолетовой радиации Солнца. Слой озона занимает почти всю стратосферу. Этот слой, границы которого приблизительно соответствуют границам стратосферы, называют озоносферой. Это слой 10 – 60 км, содержащий озон с максимумом на высоте 22- 25 км.

Стратосфера очень бедна водяным паром. Здесь не происходит бурных процессов облакообразования и не выпадают осадки.

3.3. Мезосфера. Наблюдениями с помощью метеорологических ра-кет и другими способами установлено, что общее повышение тем­пературы, наблюдающееся в стратосфере, заканчивается на высо­тах 50 – 55 км. Выше этого слоя температура вновь понижается и у верхней границы мезосферы (около 80 км.) достигает -75°,-90°. Давление воздуха вверху мезосферы примерно в 200 раз меньше, чем у земной поверхности. На уровне 80 км. от поверхности Земли заключено свыше 99,5% всей массы атмосферы. Далее вновь происходит повышение температуры с высотой.

3.4. Термосфера. Выше мезосферы расположена термосфера, для которой характерно повышение температуры с высотой. По полученным данным, преимущественно с помощью ракет, установлено, что в термосфере уже на уровне 150 км. температура воздуха достигает 220°—240°, а на уровне 200 км. более 500°. Выше температура продолжает повышаться и на уровне 500—600 км. превышает 1500°. На основе данных, полученных при запусках искусственных спутников Земли, найдено, что в верхней термо-сфере температура достигает около 2000° и в течение суток значительно колеблется. Возникает вопрос, чем объяснить такую высокую температуру в высоких слоях атмосферы. Напомним, что температура газа - это мера средней скорости движения молекул. В нижней, наибо­лее плотной части атмосферы молекулы газов, составляющих воздух, при движении часто сталкиваются между собой и мгно­венно передают друг другу кинетическую энергию. Поэтому ки­нетическая энергия в плотной среде в среднем одна и та же. В высоких слоях, где плотность воздуха очень мала, столкновения между молекулами, находящимися на больших расстояниях, происходят реже. При поглощении энергии скорость молекул в промежутке между столкновениями сильно изменяется; к тому же молекулы более легких газов движутся с большей скоростью, чем молекулы тяжелых газов. Вследствие этого температура газов может быть различной.

3.5. Экзосфера (сфера рассеяния)—самая верхняя часть атмо­сферы, расположена выше 800 км. Она мало изучена. По дан­ным наблюдений и теоретических расчетов температура в экзосфере с высотой возрастает предположительно до 2000°. В от­личие от нижней ионосферы, в экзосфере газы настолько разре­жены, что частицы их, двигаясь с огромными скоростями, почти не встречаются друг с другом.

3.6. Из атмосферы в космическое пространство. На высоте порядка 2000 – 3000 км. экзосфера переходит в земную корону, прослеживающуюся до высоты более 20 000 км. и образованную «ускользнувшими» из экзосферы частицами водорода. Прежние предпо­ложения, что за пределами атмосферы Земли, в межпланетном пространстве, газы очень разрежены и концентрация частиц не превышает нескольких единиц в 1 см3, не оправдались. Исследования показали, что околоземное пространство заполнено заряженными частицами. На этой основе была выдвинута гипотеза о существовании зон вокруг Земли с заметно повышенным содержанием заряжённых частиц, т.е. поясов радиации — внут­реннего и внешнего.

 

 

Другие свойства атмосферы и воздействие

На человеческий организм

Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 9 км, хотя примерно до 115 км атмосфера содержит кислород.

Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.

В лёгких человека постоянно содержится около 3 л альвеолярного воздуха. Парциальное давление кислорода в альвеолярном воздухе при нормальном атмосферном давлении составляет 110 мм рт. ст., давление углекислого газа — 40 мм рт. ст., а паров воды — 47 мм рт. ст. С увеличением высоты давление кислорода падает, а суммарное давление паров воды и углекислоты в лёгких остаётся почти постоянным — около 87 мм рт. ст. Поступление кислорода в лёгкие полностью прекратится, когда давление окружающего воздуха станет равным этой величине.

На высоте около 19—20 км давление атмосферы снижается до 47 мм рт. ст. Поэтому на данной высоте начинается кипение воды и межтканевой жидкости в организме человека. Вне герметической кабины на этих высотах смерть наступает почти мгновенно. Таким образом, с точки зрения физиологии человека, «космос» начинается уже на высоте 15—19 км.

Плотные слои воздуха — тропосфера и стратосфера — защищают нас от поражающего действия радиации. При достаточном разрежении воздуха, на высотах более 36 км, интенсивное действие на организм оказывает ионизирующаярадиация — первичные космические лучи; на высотах более 40 км действует опасная для человека ультрафиолетовая часть солнечного спектра.

По мере подъёма на всё большую высоту над поверхностью Земли постепенно ослабляются, а затем и полностью исчезают такие привычные для нас явления, наблюдаемые в нижних слоях атмосферы, как распространение звука, возникновение аэродинамической подъёмной силы и сопротивления, передача тепла конвекцией и др.

В разрежённых слоях воздуха распространение звука оказывается невозможным. До высот 60—90 км ещё возможно использование сопротивления и подъёмной силы воздуха для управляемого аэродинамического полёта. Но начиная с высот 100—130 км знакомые каждому лётчику понятия числа М и звукового барьера теряют свой смысл: там проходит условная линия Кармана, за которой начинается область чисто баллистического полёта, управлять которым можно, лишь используя реактивные силы.

На высотах выше 100 км атмосфера лишена и другого замечательного свойства — способности поглощать, проводить и передавать тепловую энергию путём конвекции (то есть с помощью перемешивания воздуха). Это значит, что различные элементы оборудования, аппаратуры орбитальной космической станции не смогут охлаждаться снаружи так, как это делается обычно на самолёте, — с помощью воздушных струй и воздушных радиаторов. На такой высоте, как и вообще в космосе, единственным способом передачи тепла является тепловое излучение.

 

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...