Квантование коэффициентов. Расчет разрядности
Габариты, вес и стоимость специализированного процессора, предназначенного для обработки сигналов, тем меньше, чем короче кодовые слова и, в частности, кодовые слова, соответствующие коэффициентам цифровой цепи. Кодовые слова коэффициентов имеют, в общем случае, бесконечную разрядность, поэтому разрядность приходится ограничивать в пределах допусков на отклонение от нормы системных характеристик. Спецпроцессор функционирует в системе чисел с фиксированной запятой. В этом случае дробная часть кодовых слов определяет модуль числа, целая часть - знак числа: знаку плюс соответствует нуль, знаку минус - единица. Перевод чисел из десятичной системы в двоичную удобно выполнить в форме таблицы, в которой первая клетка отводится исходному числу, остальные клетки - результату перемножения на два дробной части предыдущего числа. Целая часть числа в основных клетках определяет дробную часть двоичного числа. Пример. Дано десятичное число А(10) = 0,32. Определить прямой код двоичного числа А(2), если разрядность двоичного числа принять равной 8. Решение Заполним таблицу промежуточных расчетов.
Отсюда двоичное число А(2) = 0,010100011 Последний - девятый - разряд необходим для округления. Окончательный результат: А(2) = 0,01010010 - после округления; А(2) = 0,01010001 - после усечения. Оценим погрешность полученных чисел конечной разрядности. При округлении А(10) 0*2-1 + 0*2-3 + 1*2-4 + 0*2-5 + 0*2-6 + 1*2-7 + 0*2-8 = 0,3203125 Отсюда, относительная погрешность представления исходного числа кодовым словом конечной разрядности равной 8 составляет d» 0,1 % При усечении А(10) 0*2-1 + 0*2-3 + 1*2-4 + 0*2-5 + 0*2-6 + 0*2-7 + 1*2-8 = 0,31640625
что соответствует d» 1,15 % Существуют различные способы расчета разрядности коэффициентов по допускам на системные характеристики. Самый простой способ - метод проб. Расчет по методу проб начинается с выбора разрядности коэффициентов ориентировочно, субъективно. Затем следует расчет системных характеристик с новыми - приближенными - значениями коэффициентов, оценка искажений характеристик и соответствующая коррекция разрядности коэффициентов в ту или иную сторону. Расчет повторяется столько раз, сколько потребуется для удовлетворительного решения задачи по выбору разрядности коэффициентов. Чувствительность Анализ искажений, вызванных квантованием коэффициентов, удобно выполнить по функции чувствительности S. Чувствительность некоторой величины M к изменению параметра q (сокращенно - чувствительность M по q) определяется так: (4.8) Чувствительность отвечает на вопрос: на сколько процентов изменится величина М, если параметр q изменится на 1%. Параметром q цифровой цепи могут быть как коэффициенты цепи, так и зависящие от них вторичные параметры, например, координаты полюсов и нулей на плоскости Z. Содержание величины М может быть разным в зависимости от поставленной задачи; например, одна из системных характеристик или положение полюса, если параметром q является коэффициент цепи. Рассмотрим более подробно чувствительность передаточной функции по одному из коэффициентов цепи ai (4.9) Чувствительность комплекса передаточной функции удобно получать непосредственно по (4.9) Чувствительность АЧХ и ФЧХ Можно выразить через вещественную и мнимую части чувствительности комплекса передаточной функции. Действительно, Следовательно (4.10) Пример. Определить чувствительность АЧХ по коэффициенту b, если Решение Здесь Следовательно где Отсюда чувствительность АЧХ по коэффициенту b
Чувствительность частотных характеристик достаточно оценить на частоте полюса максимальной добротности wк, которая определяется, согласно (4.6), значением угла полюса Qк = wкТ На частоте wк чувствительность принимает максимальное значение: Оценку максимума чувствительности по коэффициенту ai можно применить, в частности, к расчету разрядности коэффициентов по допускам на отклонение АЧХ. Расчет начинается с определения среднеквадратичной чувствительности по всем коэффициентам ai. (4.11) Необходимость среднеквадратичного критерия объясняется разным сочетанием знаков чувствительностей в зависимости от частоты, поэтому суммарная чувствительность может оказаться равной нулю даже на частоте wк. В режиме малых приращений коэффициентов реакция системы проявляется по линейному закону, поэтому можно воспользоваться пропорцией 1% - dS - dН и определить среднеквадратичное значение погрешности коэффициентов dS по допуску на отклонение АЧХ dН. Сравнивая требуемое значение dS и реализованное значение среднеквадратичной погрешности коэффициентов d'S d'S = (4.12) можно определить разрядность коэффициентов методом проб. В качестве примера анализа цепи по функции чувствительности можно сделать ссылку на анализ чувствительности полосового ЦФ к изменению тактовой частоты. Оказалось, что смещение полосы пропускания увеличением тактовой частоты, при неизменной ширине полосы пропускания, потребует увеличения разрядности коэффициентов.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|