Температура воспламенения и самовоспламения
⇐ ПредыдущаяСтр 2 из 2 При определении температуры вспышки в открытом тигле н/п вспыхивает и сейчас же гаснет. Если же продолжать нагревание н/п, можно вновь наблюдать вспышку паров, при этом вспыхнувший н/п будет спокойно гореть в течение некоторого времени, соответствующая этому наинизшая температура называется температурой воспламенения. Если н/п нагреть до высокой температуры, а затем привести его в соприкосновение с воздухом, то он самопроизвольно воспламениться. Температуру, при которой соприкосновение н/п с воздухом вызывает его воспламенение и устойчивое горение без поднесения источника огня, называют температурой самовоспламенения. Температура самовоспламенения н/п зависит не от испаряемости, а от их химического состава, наибольшей температурой самовоспламенения обладают ароматические углеводороды, а также богатые ими н/п, наименьшей - парафиновые углеводороды. Чем выше молекулярная масса углеводородов, тем ниже температура самовоспламенения, т.к. она зависит от окислительной способности. С повышением молекулярной массы углеводородов их окислительная способность возрастает, и они вступают в реакцию окисления при более низкой температуре. Температуру самовоспламенения н/п определяют по ГОСТ 13920-68 в открытой колбе нагреванием до появления пламени в колбе. Температура самовоспламенения на сотни градусов выше температур вспышки и воспламенения. Самовоспламенение н/п часто является причиной пожаров при нарушении герметичности фланцевых соединений в трубчатых печах и т.д.
Низкотемпературные свойства н/п Низкотемпературные свойства нефтей и н/п (топлив и и масел) позволяют оценивать их подвижность, а также косвенно наличие в них некоторых групп углеводородов. Так, парафинистые н/п застывают при более высоких температурах, присутствие смолистых веществ понижает температуру застывания. К низкотемпературным характеристикам нефтей и н/п относят температуры помутнения, начала кристаллизации, застывания.
Температура помутнения Температурой помутнения считается та максимальная температура, при которой в проходящем свете топливо меняет прозрачность (мутнеет) при сравнении с эталонным (параллельным) образцом. Температура помутнения для авиабензинов, авиакеросинов и дизельных топлив определяют стандартным методом (ГОСТ 5066-91). Для этого в две стандартные пробирки с двойными стенками заливают образец испытуемого топлива (до метки) и закрывают корковой пробкой, в которую вставлены термометр и проволочная мешалка. Первую пробирку устанавливают в бане с охладительной смесью, а вторую (контрольную) – на штативе для пробирок. Первую пробирку охлаждают при постоянном перемешивании и за 5 0С до ожидаемой температуры помутнения быстро вынимают из бани, опускают в стакан со спиртом и вставляют в штатив рядом со второй контрольной пробиркой. Если в проходящем свете прозрачность топлива в первой пробирке не изменилась, то ее вновь устанавливают в баню и продолжают охлаждение. Дальнейшие контрольные наблюдения проводят через каждый градус, и та температура, при которой появится мутность в первой пробирке по сравнению с контрольной, принимается за температуру помутнения. Температурой помутнения чаще всего характеризуют низкотемпературные свойства дизельных топлив, для них она составляет от 0 0С до минус 35 0С. Помутнение дизельных топлив очень часто обусловлено присутствием в них какого-то количества н-алканов и примеси воды, которые при охлаждении первыми образуют по всему объему топлива мелкие кристаллы.
Температура начала кристаллизации Температура начала кристаллизации характеризует низкотемпературные свойства авиационных топлив (бензинов и керосинов), в составе которых практически отсутствуют н-алканы. Температура начала кристаллизации определяется, так же как и температура помутнения, по ГОСТ 5066-91. По достижении температуры помутнения топливо продолжают охлаждать до появления первых кристаллов. За температуру начала кристаллизации принимают максимальнуютемпературу, при которой в топливе невооруженным глазом обнаруживаются кристаллы ароматических углеводородов, прежде всего бензола, который затвердевает при 5,5 0С. Эти кристаллы, хотя и не приводят к потере текучести топлив, тем не менее опасны для эксплуатации двигателей, поскольку забивают их топливные фильтры и нарушают подачу топлива. Поэтому по техническим условиям температура начала кристаллизации авиационных и реактивных топлив не должна превышать минус 60 0С. Температура застывания Большое значение при транспортировке и применении н/п в зимних условиях имеет их подвижность при низких температурах. Температура, при которой н/п в стандартных условиях теряет подвижность, называется температурой застывания. Потеря подвижности н/п связана с фазовым переходом вещества из области обычной вязкости к структурной. Фазовый переход при понижении температуры в парафинистых н/п сопровождается появлением множества кристаллов парафина и церезина, которые образуют сетку – кристаллический каркас. Незастывшая часть н/п находится внутри сетки и таким образом становится неподвижной. Форма выделяюшихся кристаллов зависит от химического состава углеводородной среды, скорость их роста – от вязкости среды, содержания и растворимости парафиновых углеводородов при данной температуре и скорости охлаждения системы. Скорость роста кристаллов прямо пропорциональна концентрации парафиновых углеводородов и обратно пропорциональна вязкости среды. Смолистые и некоторые другие поверхностно-активные вещества, адсорбируясь на поверхности кристаллов, способны задерживать процесс кристаллизации парафинов, поэтому температура застывания масляных дистиллятов после очистки от смол повышается. Существуют такие вещества, которые при добавлении к минеральным маслам понижают их температуру застывания, такие вещества называются депрессорными присадками, или депрессаторами.
Температуру застывания н/п определяют по ГОСТ 20287-91. Предварительно нагретый и профильтрованный н/п заливают в стандартную пробирку до метки и закрывают пробкой с термометром. Пробирку с н/п нагревают для того, чтобы твердые смолистые вещества и кристаллы парафинов расплавились или растворились в жидкой части н/п. Для н/п, богатых смолами и бедных парафинами, предварительный подогрев приводит к понижению температуры застывания, т.к. смолы, адсорбируясь на кристаллах парафина, препятствуют образованию парафиновой кристаллической решетки, напротив, температура застывания н/п, богатых парафинами, после подогрева повышается. Пробирку с нагретым н/п вставляют в специальную муфту охладительной бани и охлаждают до предполагаемой температуры застывания. При этой температуре пробирку с н/п наклоняют под углом 45о и наблюдают за его уровнем. Независимо от того, смещается уровень или остается неподвижным, опыт повторяют с самого начала, включая термическую обработку, и охлаждают продукт до более низкой или более высокой температуры. Таким образом, находят ту наивысшую температуру, при которой уровень н/п пробирке, наклоненной под углом 45о, остается неподвижным в течение определенного времени и эта температура принимается за температуру застывания н/п.
УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ • Основная литература: • Технология переработки нефти. В 2-х частях. Часть первая. Первичная переработка нефти /Под ред. О.Ф. Глаголевой и В.М. Капустина. – М.: КолосС, 2006. – 400 с. • Ахметов С.А. Технология глубокой переработки нефти и газа: Учебное пособие для вузов. Уфа: Гилем, 2002. 672 с. • Мановян А.К. Технология переработки природных энергоносителей.- М.: Химия, КолосС, 2004. – 456 с. • Вержичинская С.В., Дигуров Н.Г., Синицин С.А. Химия и технология нефти и газа: Учебное пособие для среднего профессионального образования. – М.: ФОРУМ: ИНФРА-М, 2007.-400 с. • Эрих В.Н., Расина М.Г., Рудин М.Г. Химия и технология нефти и газа: Учебное пособие для техникумов. – 3-е изд., перераб. – Л.: Химия, 1985. – 408 с. • Гуреев А.А., Жоров Ю.М., Смидович Е.В. Производство высокоокта-новых бензинов.- М.: Химия, 1981. -224 с. • Проблемы теории и практики исследований в области катализа. Под ред. академика АН УССР В.А. Ройтера. – Киев: Наукова думка, 1973. -362 с. • Гольберт К.А., Вигдергауз М.С. Курс газовой хроматографии. Изд. 2-е испр. и доп. М., Химия,1974. 376 с.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|