Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Основы технологии черных металлов




Основной способ производства черных металлов — получение чугуна из руды и последующая его переработка в сталь. Для получения стали используют также металлолом. В последние годы начало развиваться непосредственное получение стали из железных руд.

Производство чугуна. Чугун получают в доменных печах высокотемпературной (до 1900 °С) обработкой смеси железной руды, твердого топлива (кокса) и флюса. Флюс (обычно известняк СаС03) необходим для перевода в расплавленное состояние пустой породы (состоящей в основном из Si02 и А1203), содержащейся в руде, и золы от сжигания топлива. Эти компоненты, сплавляясь друг с другом, образуют доменный шлак, который представляет собой в основном смесь силикатов и алюминатов кальция, близкую по составу к портландцементу.

Доменная печь — очень большое инженерное сооружение. Полезный объем печи — 2000…3000 м3, а суточная производительность — 5000…7000 т. В печь (рис. 7.1) сверху через устройство 3 загружают шихту, а снизу через фурмы 7 подают воздух. По мере продвижения шихты вниз ее температура поднимается. Кокс, сгорая в условиях ограниченного доступа кислорода, образует СО, который, взаимодействуя с оксидами железа, восстанавливает их до чистого железа, окисляясь до С02. Железо плавится и при этом растворяет в себе углерод (до 5 %), превращаясь в чугун. Расплавленный чугун 9 стекает в низ печи, а расплав шлака 2, как более легкий, находится сверху чугуна. Чугун и шлак периодически выпускают через летки 1 и 8 в ковш. На каждую тонну чугуна получается около 0,6 т огненно-жидкого шлака.

Доменный шлак — ценное сырье для получения строительных материалов: шлакопортландцемента, пористого заполнителя для бетонов — шлаковой пемзы, шлаковой ваты и др.

Чугун главным образом (около 80) идет для производства стали, остальная часть чугуна используется для получения литых чугунных изделий.

В зависимости от состава различают белый и серый чугуны. Белый чугун твердый и прочный, содержит большое количество цементита; в сером из-за присутствия кремния цементит не образуется и углерод выделяется в виде графита.

Производство стали. Сталь получают из чугуна и железного металлолома и специальных добавок, в том числе и легирующих элементов, плавлением в мартеновских печах, конверторах или электрических печах.

Рис. 7.1. Схема доменной печи:
1 — летка для выпуска жидкого чугуна; 2 — расплавленный шлак; 3 — загрузочное устройство; 4 — газоотводная труба; 5 — капли расплавленного чугуна; 6 — капли шлакового расплава; 7 — фурма для подачи воздуха; 8 — летка для выпуска расплавленного шлака; 9 — жидкий чугун

Выплавка стали — сложный процесс, складывающийся из целого ряда химических реакций между сырьевой шихтой, добавками и топочными газами. Выплавленную сталь разливают на слитки или перерабатывают в заготовки методом непрерывной разливки.

Изготовление стальных изделий. Стальные слитки — полуфабрикат, из которого различными методами получают необходимые изделия. В основном применяют обработку стали давлением: металл под действием приложенной силы деформируется, сохраняя приобретенную форму. При обработке металла давлением практически нет отходов. Для облегчения обработки сталь часто предварительно нагревают. Различают следующие виды обработки металла давлением: прокатка, прессование, волочение, ковка, штамповка.

Наиболее распространенный метод обработки — прокатка; им обрабатывается более 70 получаемой стали.

При прокатке стальной слиток пропускают между вращающимися валками прокатного стана, в результате чего заготовка обжимается, вытягивается и в зависимости от профиля прокатных валков приобретает заданную форму (профиль). Прокатывают сталь в основном в горячем состоянии. Сортамент стали горячего проката — сталь круглая, квадратная, полосовая, уголковая равнобокая и неравнобокая, швеллеры, двутавровые балки, шпунтовые сваи, трубы, арматурная сталь гладкая и периодического профиля и др.

При волочении заготовка последовательно протягивается через отверстия (фильеры) размером меньше сечения заготовки, вследствие чего заготовка обжимается и вытягивается. При волочении в стали появляется так называемый наклеп, который повышает ее твердость. Волочение стали обычно производят в холодном состоянии, при этом получают изделия точных профилей с чистой и гладкой поверхностью. Способом волочения изготовляют проволоку, трубы малого диаметра, а также прутки круглого, квадратного и шестиугольного сечения.

Ковка — обработка раскаленной стали повторяющимися ударами молота для придания заготовке заданной формы. Ковкой изготовляют разнообразные стальные детали (болты, анкеры, скобы и т. д.).

Штамповка — разновидность ковки, при которой сталь, растягиваясь под ударами молота, заполняет форму штампа. Штамповка может быть горячей и холодной. Этим способом можно получать изделия очень точных размеров.

Прессование представляет собой процесс выдавливания находящейся в контейнере стали через выходное отверстие (очко) матрицы. ]J Исходным материалом для прессования служит литье или прокатные заготовки. Этим способом можно получать профили различного сечения, в том числе прутки, трубы небольшого диаметра и разнообразные фасонные профили.

Холодное профилирование — процесс деформирования листовой или круглой стали на прокатных станах. Из листовой стали получают гнутые профили с различной конфигурацией в поперечнике, а из круглых стержней на станках холодного профилирования путем сплющивания — упрочненную холодносплющенную арматуру.

3 Под атомно-кристаллической структурой понимают взаимное расположение атомов в кристалле. Кристалл состоит из атомов (ионов), расположенных в определенном порядке, который периодически повторяется в трех измерениях. Наименьший комплекс атомов, который при многократном повторении в пространстве позволяет воспроизвести пространственную кристаллическую решётку, называют элементарной ячейкой.

Рис.2.1. Схема определения координационного числа кристаллической решётки: а – ГЦК; б – ОЦК; в – ГПУ

Простейшим типом кристаллической ячейки является кубическая решётка. В простой кубической решётке атомы расположены (упакованы) недостаточно плотно.

Стремление атомов металла занять места, наиболее близкие друг к другу, приводит к образованию решеток других типов (рис. 2.2):

- объёмноцентрированной кубической решётки (ОЦК) (рис.2.2а) с параметром

а = 0,28 – 0,6мм = 2,8 – 6,0 Å

- гранецентрированной кубической решётки (ГЦК) (рис.2.2б) с параметром

а = 0,25мм

- гексагональной плотно упакованной решётки (ГПУ) (рис.2.2в) с параметром

с / а» 1,633

Рис. 2.2. Кристаллические решётки: а – гранецентрированный куб (ОЦК); б – объемноцентрированный куб (ГЦК); в- гексагональная плотно упакованная (ГПУ)

Узлы (положения атомов), направления в плоскости и в пространстве обозначаются с помощью так называемых индексов Миллера (рис. 2.3). Индексы узла записываются – (mnp), индексы направления - [mnp], индекс плоскости - (hk1).

Рис. 2.3. Символы некоторых важнейших узлов, направлений и плоскостей в кубической решётке

Вследствие неодинаковой плотности атомов в различных плоскостях и направлениях решётки многие свойства отдельно взятого кристалла (химические, физические, механические) по данному направлению отличаются от свойств в другом направлении и, естественно, зависят от того, сколько атомов встречается в этом направлении. Различие свойств в зависимости от направления испытания носит название анизотропии. Все кристаллы анизотропны. Анизотропия – особенность любого кристалла, характерная для кристаллического строения.

Технические металлы являются поликристаллами, т.е. состоят из совокупности кристаллитов с различной ориентацией. При этом свойства во всех направлениях усредняются.

2.2. Дефекты кристаллического строения

Строение реальных кристаллов отличается от идеальных. Реальные кристаллы всегда содержат несовершенства (дефекты) кристаллического строения, которые нарушают связи между атомами и оказывают влияние на свойства металлов.

Дефекты в кристаллах принято классифицировать по характеру их измерения в пространстве:

1. Точечные. Точечными дефектами называются нарушения периодичности кристалла, размеры которых сопоставимы с размерами атома во всех измерениях.

К точечным дефектам относятся вакансии, межузельные атомы, примеси замещения, примеси чужеродных атомов внедрения (рис. 2.5).

Рис. 2.5.Точечные дефекты в кристаллической решетке: а- вакансия;

б - межузельный атом; в- дефект Френкеля; г- примесные атомы замещения (большой) и внедрения (маленький).

Стрелками указаны направления смещений атомов в решетке.

Вакансии и межузельные атомы появляются в кристаллах при любой температуре выше абсолютного нуля из-за тепловых колебаний атомов. Каждой температуре соответствует равновесная концентрация вакансий, а также межузельных атомов. Например, в меди при температуре 20-25 оС содержится 10-13 ат. % вакансий, а вблизи точки плавления - уже 0,01 ат. % (одна вакансия приходится на 104 атомов).

Пересыщение точечными дефектами достигается при резком охлаждении после высокотемпературного нагрева, при пластическом деформировании и при облучении нейтронами. Чем выше температура, тем больше концентрация вакансий и тем чаще они переходят от узла к узлу. Вакансии являются самой важной разновидностью точечных дефектов; они ускоряют все процессы, связанные с перемещениями атомов: диффузию, спекание порошков и т. д.

2. Линейные. Линейные дефекты в кристаллах характеризуются тем, что их поперечные размеры не превышают нескольких межатомных расстояний, а длина может достигать размера кристалла. К линейным дефектам относятся дислокации – линии, вдоль и вблизи которых нарушено правильное периодическое расположение атомных плоскостей кристалла.

Важнейшие виды линейных несовершенств - краевые и винтовые дислокации (рис.2.6).

а б

Рис. 2.6. Схема дислокаций: а – краевая; б - винтовая

Краевая дислокация в сечении представляет собой край «лишней» полуплоскости в решетке (рис.2.7)

Рис. 2.7. Сечение простой кубической решетки: а - с краевой дислокацией; б - без дислокации.

Вокруг дислокаций решетка упруго искажена. Схема образования атмосферы Коттрелла в кристалле представлена на рисунке 2.8.

 

Рис. 2.8. Образование атмосферы Коттрелла: а – атомы примеси замещения (заштрихованы) и внедрения беспорядочно расположены в решетке; б, в – атомы примеси переместились к дислокации, в результате чего энергия решетки понизилась.

3. Поверхностные (двумерные ). Под этими дефектами понимают нарушения, которые обладают большой протяженностью в двух измерениях и протяженностью лишь в несколько межатомных расстояний в третьем измерении.

К поверхностным дефектам относятся дефекты упаковки, двойниковые границы, границы зерен.

4. Объемные (трехмерные ). Под ними понимают нарушения, которые в трех измерениях имеют неограниченные размеры. К таким нарушениям относят трещины, поры, усадочные раковины.

4 Сплавы железа с углеродом, имеющие промышленное применение, называются чугунами и сталями. Наибольшее количество углерода в этих сплавах достигает 6,67%.

Если в сплаве содержится 93,33% Fe и 6,67% С, то при кристаллизации образуется химическое соединение, называемое карбидом железа или цементитом (Fe3C).

Сплавы Fe — Fe3C с содержанием углерода до 6,67% (имеют большое практическое значение).

На рис. 30 показана диаграмма состояния сплавов Fe—Fe3C. По оси ординат отложены температура, а по оси абсцисс — концентрация углерода в процентах. Левая ордината соответствует содержанию 100% Fe, а правая ордината —содержанию 6,67% С или 100% цементита Fe3C.

Температура плавления железа — 1535° С (точка А на диаграмме); температура плавления цементита Fe3C — 1550° С (точка D на диаграмме); температура 910° С (точка G) соответствует аллотропическому превращению железа α ↔ γ; точка Е характеризует максимальную растворимость углерода в γ железе при 1130° С (2,0% С); линия ACD —линия начала кристаллизации сплавов (линия ликвидуса); линия AECF —линия конца кристаллизации сплавов (линия солидуса); линия GSE —линия начала перекристаллизации сплавов в твердом состоянии; линия PSK (температура 723° С) —линия конца превращений структурных составляющих в твердом состоянии.

Яндекс.Директ

Погода в Гродненской областиВ Гродненской области будет холодная зима?yandex.by
Объявление скрыто.

Рис. 30. Диаграмма состояния железоуглеродистых сплавов

Яндекс.Директ

Скачать Microsoft Office Word!Microsoft Office Word Viewer для Windows скачать бесплатно на русском языке 18+Все программыДля безопасностиДля интернетаДля системыbeprogramm.top
Объявление скрыто.

При затвердевании железоуглеродистых сплавов образуются следующие структурные составляющие:

1) Аустенит — твердый раствор углерода в Feγ Он имеет кристаллическую решетку гранецентрированного куба и под микроскопом представляется в виде светлых зерен с характерными двойными линиями. Твердость аустенита НВ 220; он немагнитен и при охлаждении сплавов существует только до температуры 723° С.

2) Феррит — твердый раствор углерода в Feα; он имеет кристаллическую решетку объемноцентрированного куба, его свойства близки к свойствам чистого железа: пластичен (δ=50%); мягок (НВ 80); предел прочности σв= 250 Мн/м2 (25 кГ/мм2); до температуры 768° С он обладает магнитными свойствами.

3) Цементит или карбид железа Fe3C обладает высокими твердостью (НВ 800) и хрупкостью; различают три формы цементита:

а) первичный цементит (Ц1), выделяющийся при первичной кристаллизации из жидкого сплава;

б) вторичный цементит (Ц2), выделяющийся из твердого раствора аустенита;

в) третичный цементит (Ц3), выделяющийся из твердого раствора феррита.

Все формы цементита имеют одинаковое кристаллическое строение и свойства, но различную величину частиц-пластинок или зерен. Наиболее крупными являются частицы первичного цементита, а наиболее мелкими —частицы третичного.

Яндекс.Директ

Подскажем где взять кредит.Помощь в подборе кредита. Все банки. Без справок. Без пору­чителей. Выбирай! круглосуточно · +375#17#236-13-69#myfin.by
Объявление скрыто.

До температуры 210° С цементит обладает магнитными свойствами.

Перлит — эвтектоидная смесь феррита и цементита. Образуется из аустенита при перекристаллизации сплава в твердом состоянии и содержит 0,8% С. Перлит имеет пластинчатое или зернистое строение, в зависимости от этого его механические свойства колеблются в следующих пределах: НВ 160—230; σв = 630 ÷ 820 Мн/м2 (63—82 кГ/мм2); δ = 15 ÷ 20%.

Ледебурит — эвтектическая смесь аустенита и первичного цементита образуется при температуре 1130° С (точка С на диаграмме) и содержит 4,3% С; он твердый (НВ 700) и хрупкий.

Ледебурит является структурной составляющей белых чугунов.

В зависимости от концентрации углерода и структуры стали и чугуны подразделяют на следующие структурные группы: доэвтектоидные стали (до 0,8% С); структура —феррит и перлит; эвтектоидная сталь (0,8% С); структура —перлит; заэвтектоидные стали (от 0,8 до 2,0%); структура —перлит и вторичный цементит; доэвтектические (белые) чугуны (от 2 до 4,3%); структура —ледебурит (распавшийся), перлит и вторичный цементит; эвтектический белый чугун (4,3% С); структура—ледебурит; заэвтектические белые чугуны (от 4,3 до 6,67% С); структура —ледебурит (распавшийся) и первичный цементит.

Яндекс.Директ

Купить Б/У МКПП RenaultИщете Б/У МКПП Renault с полной гаран­тией и доставкой? Жмите!Гарантия до 50 днейДоставка по всей РБКаталог БУ запчастейО насautostrong-m.byАдрес и телефон
Объявление скрыто.

Рассмотренная диаграмма состояния Fe — Fe3C является неравновесной (метастабильной), так как она получена в условиях сравнительно быстрого охлаждения, при которых углерод находится в виде Fe3C.

Если железоуглеродистые сплавы подвергать очень медленному охлаждению или же вводить в них кремний, способствующий графитизации, то вместо цементита в чугунах может быть получен углерод в структурно свободном состоянии в виде графита, являющегося продуктом распада цементита по реакции Fe3C = 3Fe + С. Превращения, протекающие с выделением графита, обозначают на диаграмме состояния железоуглеродистых сплавов штриховыми линиями (см. рис. 30). Диаграмма состояния Fe — С является равновесной (стабильной); по ней получаются серые чугуны, структурным признаком которых является наличие графита, выделяющегося на ферритной основе.

Диаграмма состояния железоуглеродистых сплавов имеет большое практическое значение. Она используется для определения температур нагрева стали при различных видах термической обработки, при определении температурных интервалов для горячей обработки стали давлением (ковка, штамповка, прокатка), а также для определения температур плавления и кристаллизации стали и чугунов в литейном производстве.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...