Что изучает физика. Эксперимент. Теория. Физические модели.
Физика – наука, занимающаяся изучением простейших и вместе с тем наиболее общих св-в окр. мира. Экспериментальная физика – способ изучения природы, заключающийся в изучении природных явлений в специально приготовленных условиях. Теоритическая физика – раздел физики, в котором в качестве основного способа изучения природы исп. создание теоретических моделей, явлений и сопоставление их с реальностью. Физическая модель – физ. представление системы, объекта или процесса с целью их исследования (представление с помощью другого физ. объекта, имеющего схожую динамику поведения). К физ. моделям относится широкий набор средств, например: 1. модель самолёта в аэродинамической трубе для исследования аэродинамических св-в самолёта 2. аналоговая вычислительная машина – физ. процессы. В физ. модели и объекте исследования имеют разную природу, за искл. случаев моделирования процессов в эл. приборах. 2. Механическое движение и его виды. Равномерное прямолинейное движение. Относительность движения. Скорость. Механическое движение – изменение положения тела в пространстве относительно других тел с течением времени. Виды: 1. прямолинейное и криволинейное (по форме траектории) 2. равномерное и неравномерное (по закону движения). Равномерное прямолинейное движение – движение, при котором материальная точка за любые равные промежутки времени совершает равные перемещения. Уравнение: x = x 0 ± V 0 t Относительность движения – зависимость определённой траектории движения какого-либо тела, опр. пути, скорости и перемещения от выбранных систем отсчёта. Скорость – векторная физ. величина, отражающая быстроту движения тела.
3. 4. Инерциальные системы отсчёта. Взаимодействие тел. Масса. В инерциальной системе отсчёта всякое свободное движение происходит с постоянной по величине и направлению скоростью. Инерциальные системы отсчёта – системы отсчёта, относительно которых тело при компенсации внешних воздействий движется прямолинейно и равномерно или находится в покое. Действие одного тела на другое не может быть односторонним, оба тела действуют друг на друга, т.е. взаимодействуют. В результате взаимодействия оба тела могут изменить свою скорость. Инертная масса тела – величина, равная отношению модуля силы к модулю ускорения 5. Сила. Первый, второй и третий законы Ньютона. Сила – физическая величина, характеризующая действие на тело других тел, в результате чего у тела изменяется скорость или оно деформируется. Типы сил: 1. Гравитационные (притяжение) 2. Электромагнитные (притяжение и отталкивание)
1. Инерция. Всякое тело сохраняет состояние покоя равномерного прямолинейного движения до тех пор, пока на него не действует сила или действие всех сил скомпенсированно. R – равнодействующая сила.
2. Динамика. Сила, действующая на тело равна произведению массы тела на сообщаемое этой силой ускорение. 3. Всякому действию всегда есть равное и противоположное противодействие. 6. 7. Движение тел под действием силы тяжести по вертикали. Движение тела, брошенного под углом к горизонту и брошенного горизонтально с некоторой высоты. Движение тела, брошенного горизонтально — это сложное движение по криволинейной траектории, которое можно представить, как сумму двух независимых друг от друга движений — равномерного прямолинейного движения по горизонтали и свободного падения по вертикали. С высоты:
Под углом:
8. Вес тела, движущегося с ускорением. Силы трения. Движение тела под воздействием силы трения. Движение искусственных спутников и планет. Вес тела – это сила, с которой тело действует на горизонтальную опору, либо растягивает вертикальный подвес. 1. 2.
; Если т ело движется прямолинейно с ускорением, направленным вниз:
3.
4.
Сила трения – это сила, возникающая при движении или попытке движения одного тела по поверхности другого и направленная вдоль соприкасающихся поверхностей и взаимные притяжения молекул этих поверхностей. Сила трения покоя – сила, которая появляется м/у соприкасающимися поверхностями тел, неподвижных относительно друг друга. Сила трения качения – сила, которая возникает, когда одно тело катится по поверхности другого. Сила трения скольжения – сила, которая зависит от скорости и всегда направлена против относительной скорости перемещения тела.
Минимальную скорость, при которой тело, движущиеся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите, называют первой космической. 9. Импульс тела. Закон сохранения импульса. Реактивное движение. Импульс – изменение кол-ва движения пропорционально движущей силы и происходит по направлению той прямой, по которой эта сила действует. Закон сохранения импульса – геометрическая сумма импульсов тел, составляющая замкнутую систему, остаётся постоянной при любых движениях и взаимодействиях тел этой системы. Реактивное движение – движение, которое возникает при отделении о тела некоторой его части с определённой скоростью. Реактивные двигатели делятся на 2 типа: ракетные и воздушно-реактивные.
Импульс:
ЗСИ: 10. Работа силы. Мощность. КПД. Работа – физическая величина, численно равная произведению силы, действующей на тело, на перемещение, которое совершает тело под действием этой силы, и на косинус угла м-у направлением силы и направлением движения тела (измеряется в Джоулях (1Дж= 1Н*м)) Мощность – работа силы, совершаемая за единицу времени. (1Вт= 1Дж/с) КПД – отношение полезной работы ко всей затраченной работе.
11. Механическая энергия. Кинетическая и потенциальная энергии. Закон сохранения энергии. Механическая энергия – сумма кинетической и потенциальной энергий.
Кинетическая энергия – энергия, которой обладает движущийся предмет. Физическая величина, равная половине произведения массы тела на квадрат скорости. Теорема о кинетической энергии – работа приложенной к телу равнодействующей силы равно изменению его кинетической энергии. Потенциальная энергия – энергия, которая определяется взаимным положением взаимодействующих тел или частей одного и того же тела.
12. Агрегатные состояния вещества. Основные положения МКТ. Масса и размеры молекул. Количество вещества. Агрегатные состояния вещ-ва: твёрдое, жидкое, газообразное, плазма. Основные положения МКТ: 1. Все вещ-ва состоят из молекул. 2. Молекулы движутся хаотично. 3. Молекулы взаимодействуют м/у собой. Относительная молекулярная (атомная) масса вещ-ва – отношение массы молекулы данного вещ-ва к 1/12 массы атома углерода. Кол-во вещ-ва – величина, характеризующая кол-во молекул (атомов), содержащихся в веществе Моль – кол-во вещ-ва, в котором содержится столько же молекул (атомов), сколько содержится атомов в 12 гр. Углерода. В одном моль любого вещ-ва содержится одинаковое кол-во молекул. Это «Постоянная Авогадро» Молярная масса – масса данного вещ-ва, взятого в кол-ве 1 моль:
Масса всех молекул на массу 1 молекулы:
13. Идеальный газ в МКТ. Основное уравнение МКТ идеального газа. Идеальный газ – одноатомный, разрежённый газ, взаимодействие м/у молекулами которого пренебрежительно мало.
При решении задач реальный газ можно заменить идеальным газом, если он одноатомный и можно пренебречь взаимодействием молекул. Св-ва идеального газа: I. Размеры молекул малы по сравнению с расстоянием м/у ними. II. Молекулы взаимодействуют друг с другом и со стенками сосуда только в момент соударения III. Все соударения абсолютно упруги IV. Просматриваются любые газы, в которых число молекул очень велико. V. Молекулы распределены по всему объёму равномерно. VI. Молекулы движутся хаотично. VII. Скорости молекул могут принимать любые значения. VIII. К движению отдельной молекулы применимы законы классической механики. 14. Температура. Зависимость давления от температуры. Абсолютная температура. Температура – мера средней кинетической энергии молекул. Абсолютная температура – предельная температура, при которой давление идеального газа обращается в нуль при фиксированном объёме или объём идеального газа стремится к нулю при неизменимом давлении. Закон Шарля: давление некоторой массы газа при нагревании на 1℃ при неизменимом объёме увеличивается на Абсолютный нуль (нуль Кельвина) – температура, при которой должно прекратиться поступательное движение молекул. Температуры ниже абсолютного нулю не существует. Это предельная температура, при которой давление идеального газа равно 0. В системе СИ принято единицу измерения температуры по шкале Кельвина называть Кельвином (К).
k – постоянная Больцмана, 15. Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона). Газовые законы. Газовые законы (изопроцесс) – это процесс, протекающий при неизменном значении одного из параметров (их 3): 1. Закон Бойля-Мариотта (изотермический процесс)
T=const, PV=const, P1V1=P2V2, ;
2. Закон Гей-Люссака (изобарный процесс)
P=const, ;
3. Закон Шарля (изохорный процесс)
V=const, ;
16. Испарение и конденсация. Насыщенные и ненасыщенные пары. Влажность воздуха. Испарение – парообразование, происходящее при любой температуре со свободной поверхности жидкости. Скорость испарения зависит от: площади поверхности жидкости, температуры, рода вещества и движения молекул над поверхностью жидкости или газа. Конденсация – процесс перехода вещества из газообразного состояния в жидкое. Насыщенный пар – вещ-во в газообразном состоянии, находящееся в динамическом равновесии с жидкостью. Ненасыщенный пар – пар, находящийся при давлении ниже насыщенного. Точка росы – температура, при которой пар, находящийся в воздухе, становится насыщенным. При достижении точки росы в воздухе или на предметах, с которыми он соприкасается, начинается конденсация водяного пара. Абсолютная влажность или упругость водяного пара – давление водяного пара, находящегося в воздухе при данной температуре. (кг/м3) Влажность воздуха – характеристика насыщенности атмосферы водяными парами. Относительная влажность – отношение плотности водяного пара (или давления), находящегося в воздухе при данной температуре, к плотности (или давлению) водяного пара при той же температуре, выраженное в процентах. Для определения влажности воздуха используются приборы, которые называются гигрометрами и психрометрами. 17. Внутренняя энергия. Работа в термодинамике. Кол-во теплоты. Уравнение теплового баланса. Внутренняя энергия – сумма потенциальной энергии взаимодействия частиц, составляющих тепло, и кинетической энергии их беспорядочного теплового движения. При любых процессах в изолированной термодинамической системе внутренняя энергия остаётся неизменной. U=const.;
Изменение внутренней массы газа происходит только при изменении его температуры. Внутренняя энергия макроскопических тел в общем случает зависит от температуры и объёма тела: Газ, находящийся в цилиндре под поршнем, увеличивая свой объём, перемещает поршень и совершает работу: Единица измерения работы: 1Па * м3= 1(Н/м2)*м3=1Н*м=1Дж Кол-во теплоты – это количественная мера изменения внутренней энергии при теплообмене. Q=ΔU+A’ При смешивании горячей и холодной воды, количество теплоты Q1, отданное горячей водой, равно количеству теплоты Q2, полученному холодной водой, т.е.: |Q1|= |Q2|. Q1 (выделенное) <0, Q 2 (полученное)> 0. Q1 + Q2 = 0. В теплообмене могут участвовать не два тела, а три и более: Q1 + Q2 + Q3 + … = 0
18. Первый закон термодинамики. Процессы в газах в рамках первого закона термодинамики. Второй закон термодинамики. Энергия в природе не возникает из ничего и не исчезает бесследно: кол-во энергии только переходит из одной формы в другую. Внутреннюю энергию можно изменить, совершая работу или не совершая её (передача тепла). Изменение Δ U внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты Q, переданной системе, и работой A, совершенной системой над внешними телами. ΔU = Q – A, Q = ΔU + A. 1. В изохорном процессе (V = const) газ работы не совершает, A = 0. Следовательно, Q = Δ U = U (T 2) – U (T 1). Здесь U (T 1) и U (T 2) – внутренние энергии газа в начальном и конечном состояниях. Внутренняя энергия идеального газа зависит только от температуры (закон Джоуля). При изохорном нагревании тепло поглощается газом (Q > 0), и его внутренняя энергия увеличивается. При охлаждении тепло отдается внешним телам (Q < 0). 2. В изобарном процессе (p = const) работа, совершаемая газом, выражается соотношением: A = p (V2 – V1) = p ΔV. Первый закон термодинамики для изобарного процесса дает: Q = U (T2) – U (T1) + p (V2 – V1) = ΔU + p ΔV. При изобарном расширении Q > 0 – тепло поглощается газом, и газ совершает положительную работу. При изобарном сжатии Q < 0 – тепло отдается внешним телам. В этом случае A < 0. Температура газа при изобарном сжатии уменьшается, T 2 < T 1; внутренняя энергия убывает, Δ U < 0. 3. В изотермическом процессе температура газа не изменяется, следовательно, не изменяется и внутренняя энергия газа, Δ U = 0. Первый закон термодинамики для изотермического процесса выражается соотношением: Q=A. Количество теплоты Q, полученной газом в процессе изотермического расширения, превращается в работу над внешними телами. При изотермическом сжатии работа внешних сил, произведенная над газом, превращается в тепло, которое передается окружающим телам. Второй закон термодинамики имеет несколько формулировок. Формулировка Клаузиуса: невозможен процесс перехода теплоты от тела с более низкой температурой к телу с более высокой. Формулировка Томсона: невозможен процесс, результатом которого было бы совершение работы за счет теплоты, взятой от одного какого-то тела. Эта формулировка накладывает ограничение на превращение внутренней энергии в механическую. Формулировка Больцмана: Энтропия — это показатель неупорядоченности системы. Чем выше энтропия, тем хаотичнее движение материальных частиц, составляющих систему. Энтропия не может уменьшаться в замкнутых системах — то есть, в системах, не получающих внешней энергетической подпитки.
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||