Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Протокол последовательной связи .

           Попытка установить последовательный обмен информацией будет бесполезной, если одно из устройств будет включено. Без принимающего устройства передаваемая информация будет бесследно исчезать в канале. К счастью RS – 232 в своих спецификациях выделяет 2 проводника для определения подключения к каждому концу последовательного канала устройства и его состояния (влкючено ли устройство).

    Сигнал, передаваемый по 20 контакту, и называется сигналом готовности терминала (Data Terminal ready – DTR). Он имеет позитивную форму с DTE – устройства для сообщения о том, что оно подключено, обеспечено питание и готово начать сеанс связи.

    Аналогично сигнал поступает на контакт 6. Он называется сигналом готовности набора данных (Data set ready – DSR). Этот сигнал так же представляется в позитивном виде и говорит о том что DCE - устройство включено и готово к работе.

В нормальном канале RS – 232 оба эти сигнала должны появиться прежде чем произойдет что-либо. Устройство DTE посылает сигнал DTR устройству DSE, и DSE посылает сигнал DSR устройству DTE. Теперь оба устройства знают, что другое устройство готово к работе.

Обычно аппаратное квитирование модема реализуется при помощи двух различных проводников. Устройства DCE устанавливает положительное напряжение в 5 линии, что говорит о готовности к приёму (Clear to send – CTS). Устройство DTE воспринимает этот сигнал как «путь свободен». С другой стороны канала устройство DTE устанавливает положительное напряжение на 4ом контакте. Этот сигнал называется запрос на передачу (Request to Send – RTS). Он говорит о том, что DCE должно получить информацию.

    Важное правило гласит, если оба сигнала и CTS, RTS не представленные положительным напряжением, информация не будет передаваться ни в одном направлении. Если положительное напряжение отсутствует на контакте CTS, устройство DTE не передаст информацию на DCE. Если же положительное напряжение отсутствует в линии RTS, DCE не передаст информацию DTE.

    Ещё один сигнал порождается DCE,который необходим для начала передачи информации. Это сигнал определения передачи информации (Carrier Detect или Data Carrier Detect – CD или DCD). Положительное напряжение в этой линии указывает, что модем DCE получил несущий сигнал с модема с другого конца линии. Если же этот сигнал не выявлен, то последовательность импульсов может быть только шумами в линии. Сигналы CD помогаю DTE узнать, когда следует опасаться помех. В некоторых случаях когда CD не имеют положительного потенциала, DTE будет игнорировать поступающую информацию.

    Сигнал контакта 22 называется индикатором вызова (Ring Indicator – RI). Он используется модемом DCE для индикации терминалу DTE, к которому он подключен, что им определено напряжение вызова в телефонной линии. Другими словами, положительное напряжение RI будет терминал, сообщая ему, что кто-то тревожит модем. В большинстве последовательных системах связи этот сигнал может считаться параметрическим сигналом, потому что его отсутствие не помешает передаче информации.

    Номинально, передаче информации в последовательных каналах предшествует очень жёсткие протокол. Прежде чем она произойдёт, аппаратура на обеих концах каналах должна быть включена и готова к работе. DTE, компьютер подтвердят сигнал DTR и DCE. Модем подтвердит свой DCR. Когда телефонный вызов разбудит модем он пошлёт RI к компьютеру, который может выдать сообщение на экран. Если модем ведет переговоры с другим модемом на другом конце канала, откуда поступил вызов, местный модем сформирует CD сигнал своему компьютеру. Если они не были включены во время ожидания до вызова, компьютер подтвердит RTS, а модем – CTS.

    Введите информацию с клавиатуры для посылки её через модем или пошлите информацию из файла. Если модем может передать информацию достаточно быстро, он установит сигнал CTS, прося PС подождать немного. Когда сигнал CTS снова устанавливается положительным, компьютер воспринимает это как приглашение к передаче информации.

    Если во время передачи информации у компьютера появится необходимость выполнить какую-либо важную функцию, например, сохранит часть принятой информации на диск, сигнал RTS будет убран, и модем прекратит передачу информации. Когда компьютер освободится, сигнал RTS будет снова установлен и информация будет вновь передаваться через модем.

 

 

Интерфейс RS–232C.

Интерфейс RS–232C является наиболее широко распростра­ненной стандартной последовательной связью между микрокомпью­терами и периферийными устройствами. Интерфейс, определенный стандартом Ассоциации электронной промышленности (EIA), под­разумевает наличие оборудования двух видов: терминального DTE и связного DCE.

Чтобы не составить неправильного представления об интер­фейсе RS–232C, необходимо отчетливо понимать различие между этими видами оборудования. Терминальное оборудование, напри­мер микрокомпьютер, может посылать и (или) принимать данные по последовательному интерфейсу. Оно как бы оканчивает (terminate) последовательную линию. Связное оборудование — устройства, которые могут упростить передачу данных совместно с терминальным оборудованием. Наглядным пример связного оборудования служит модем (модулятор–демодулятор). Он оказывается соединительным звеном в последовательной цепочке между компьютером и телефонной линией.

Различие между терминальными и связными устройствами довольно расплывчато, поэтому возникают некоторые сложности в понимании того, к какому типу оборудования относится то или иное устройство. Рассмотрим ситуацию с принтером. К какому оборудованию его отнести? Как связать два компьютера, когда они оба действуют как терминальное оборудование. Для ответа на эти вопросы следует рассмотреть физическое соединение устройств. Произведя незначительные изменения в линиях интерфейса RS–232C, можно заставить связное оборудование функционировать как терминальное. Чтобы разобраться в том, как это сделать, нужно проанализировать функции сигналов интерфейса RS–232C (таблица 1.5).

 

Таблица 1.5 Функции сигнальных линий интерфейса RS–232C.

 

Номер контакта Сокращение Направление Полное название
1 FG Основная или защитная земля
2 TD (TXD) К DCE Передаваемые данные
3 RD (RXD) К DTE Принимаемые данные
4 RTS К DCE Запрос передачи
5 CTS К DTE Сброс передачи
6 DSR К DTE Готовность модема
7 SG Сигнальная земля
8 DCD К DTE Обнаружение несущей данных
9 К DTE (Положительное контрольное напряжение)
10 К DTE (Отрицательное контрольное напряжение)
11 QM К DTE Режим выравнивания
12 SDCD К DTE Обнаружение несущей вторичных данных
13 SCTS К DTE Вторичный сброс передачи
14 STD К DCE Вторичные передаваемые данные
15 TC К DTE Синхронизация передатчика
16 SRD К DTE Вторичные принимаемые данные
17 RC К DTE Синхронизация приемника
18 DCR К DCE Разделенная синхронизация приемника
19 SRTS К DCE Вторичный запрос передачи
20 DTR К DCE Готовность терминала
21 SQ К DTE Качество сигнала
22 RI К DTE Индикатор звонка
23 К DCE (Селектор скорости данных)
24 TC К DCE Внешняя синхронизация передатчика
25 К DCE (Занятость)

 

 

Примечания:

1. Линии 11, 18, 25 обычно считают незаземленными. Приведенная в таблице спецификация относится к спецификациям Bell 113B и 208A.

2. Линии 9 и 10 используются для контроля отрицательного (MARK) и положительного (SPACE) уровней напряжения.

3. Во избежание путаницы между RD (Read — считывать) и RD (Received Data — принимаемые данные) будут использоваться обозначения RXD и TXD, а не RD и TD.

 

Стандартный последовательный порт RS–232C имеет форму 25–контактного разъема типа D (рис 1).

Рис. 1. Назначение линий 25–контактного разъема типа D для интерфейса RS–232C

 

Терминальное оборудование обычно оснащено разъемом со штырьками, а связное — разъемом с отверстиями (но могут быть и исключения).

Сигналы интерфейса RS–232C подразделяются на следующие классы.

Последовательные данные (например, TXD, RXD). Интерфейс RS–232C обеспечивает два независимых последовательных канала данных: первичный (главный) и вторичный (вспомогательный). Оба канала могут работать в дуплексном режиме, т.е. одновременно осуществляют передачу и прием информации.

Управляющие сигналы квитирования (например, RTS, CTS). Сигналы квитирования — средство, с помощью которого обмен сигналами позволяет DTE начать диалог с DCE до фактической передачи или приема данных по последовательной линии связи.

Сигналы синхронизации (например, TC, RC). В синхронном режиме (в отличие от более распространенного асинхронного) между устройствами необходимо передавать сигналы синхронизации, которые упрощают синхронизм принимаемого сигнала в целях его декодирования.

На практике вспомогательный канал RS–232C применяется редко, и в асинхронном режиме вместо 25 линий используются 9 линий

(таблица 1.6).

 

 

Таблица 1.6 Основные линии интерфейса RS–232C.

Номер контакта Сигнал Выполняемая функция
1 FG Подключение земли к стойке или шасси оборудования
2 TXD Последовательные данные, передаваемые от DTE к DCE
3 RXD Последовательные данные, принимаемые DTE от DCE
4 RTS Требование DTE послать данные к DCE
5 CTS Готовность DCE принимать данные от DTE
6 DSR Сообщение DCE о том, что связь установлена
7 SG Возвратный тракт общего сигнала (земли)
8 DCD DTE работает и DCE может подключится к каналу связи

 

 

 

Виды сигналов

 

В большинстве схем, содержащих интерфейс RS–232C, данные передаются асинхронно, т.е. в виде последовательности пакета данных. Каждый пакет содержит один символ кода ASCII, причем информация в пакете достаточна для его декодирования без отдельного сигнала синхронизации.

Символы кода ASCII представляются семью битами, например буква А имеет код 1000001. Чтобы передать букву А по интерфейсу RS–232C, необходимо ввести дополнительные биты, обозначающие начало и конец пакета. Кроме того, желательно добавить лишний бит для простого контроля ошибок по паритету (четности).

Наиболее широко распространен формат, включающий в себя один стартовый бит, один бит паритета и два стоповых бита. Начало пакета данных всегда отмечает низкий уровень стартового бита. После него следует 7 бит данных символа кода ASCII. Бит четности содержит 1 или 0 так, чтобы общее число единиц в 8–битной группе было нечетным. Последним передаются два стоповых бита, представленных высоким уровнем напряжения. Эквивалентный ТТЛ–сигнал при передаче буквы А показан на рис. 2.

 

 

Рис. 2. Представление кода буквы А сигнальными уровнями ТТЛ.

 

Таким образом, полное асинхронно передаваемое слово состоит из 11 бит (фактически данные содержат только 7 бит) и записывается в виде 01000001011.

Используемые в интерфейсе RS–232C уровни сигналов отличаются от уровней сигналов, действующих в компьютере. Логический 0 (SPACE) представляется положительным напряжением в диапазоне от +3 до +25 В, логическая 1 (MARK) — отрицательным напряжением в диапазоне от –3 до –25 В. На рис. 3 показан сигнал в том виде, в каком он существует на линиях TXD и RXD интерфейса RS–232C.

 

Рис. 3. Вид кода буквы А на сигнальных линиях TXD и RXD.

 

 

Сдвиг уровня, т.е. преобразование ТТЛ–уровней в уровни интерфейса RS–232C и наоборот производится специальными микросхемами драйвера линии и приемника линии.

На рис. 4 представлен микрокомпьютерный интерфейс RS–232C. Программируемая микросхема DD 1 последовательного ввода осуществляет параллельно–последовательные и последовательно–параллельные преобразования данных. Микросхемы DD 2 и DD 3 производят сдвиг уровней для трех выходных сигналов TXD, RTS, DTR, а микросхема DD 4 — для трех входных сигналов RXD, CTS, DSR. Микросхемы DD 2 и DD 3 требуют напряжения питания ±12 В.

Рис. 4. Схема интерфейса RS–232C.

 

 

 

 

Усовершенствования

 

Разработано несколько новых стандартов, направленных на устранение недостатков первоначальных спецификаций интерфейса RS–232C. Среди них можно отметить интерфейс RS–422 (балансная система, допускающая импеданс линии до 50 Ом), RS–423 (небалансная система с минимальным импедансом линии 450 Ом) и RS–449 (стандарт с высокой скоростью передачи данных, в котором несколько изменены функции схем и применяется 37–контактный разъем типа D).

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...