Охват модели ЖСЗ обратной связью по положению
⇐ ПредыдущаяСтр 4 из 4 Структура модели ЖСЗ с единичной обратной связью по положению представлена на рисунке 3, ее переходная характеристика – на рисунке 4, вид которой соответствует консервативному звену. Такая САУ находится на границе устойчивости и неспособна привести объект в конечное положение.
Охват модели ЖСЗ обратной связью по скорости и по положению
Структура модели ЖСЗ с обратной связью по скорости с фиксированным коэффициентом передачи и единичной обратной связью по положению изображена на рисунке 5. На рисунке 6. представлен график переходной характеристики системы при задающем ступенчатом воздействии в 30º. Из переходной характеристики видно, что система, охваченная двумя обратными связями, приобретает устойчивость с приемлемыми параметрами регулирования: перерегулирование составляет примерно 3,3 %, а время регулирования – около 17 с. Установившееся значение выходного угла соответствует заданному.
Общее выражение передаточной функции структуры на рисунке 5 имеет вид:
.
Определим величину коэффициента обратной связи по скорости при заданных коэффициентах демпфирования . Очевидно что:
.
Тогда:
Для возможности изменения коэффициента демпфирования в линию местной обратной связи вводится регулятор с изменяемым коэффициентом передачи K и тогда структура модели приобретает вид, изображенный на рисунке 7.
Оценка влияния изменения коэффициента обратной связи по скорости на переходную характеристику системы Построим переходные характеристики для двух значений k1, определенных в п.п. 3. Графики этих кривых представлены на рисунках 8 и 9.
Как видно из рисунков 8 и 9 увеличение коэффициента передачи сигнала обратной связи по скорости приводит к уменьшению перерегулирования и увеличению времени регулирования системы.
Определение коэффициентов обратных связей САУ при известном времени окончания переходного процесса Если задано время переходного процесса в системе: 0,3 с, при отсутствии задающего воздействия, то можно определить коэффициенты обратных связей САУ из соображений:
где k 1, k 2 – коэффициенты обратных связей по скорости и положению соответственно; t р – время регулирования; λ1 – один из корней характеристического уравнения системы. Если принять второй корень характеристического уравнения равным: , то получим:
На рисунке 10 приведена структура САУ, удовлетворяющей заданным условиям, а на рисунке 11 – ее переходная характеристика. В модели САР множитель J выделен в отдельный блок.
Система с чистым запаздыванием. Оценка динамических свойств системы с различными временами задержки
Структура модели ЖСЗ со звеном запаздывания изображена на рисунке 12.
Ни рисунках 13, 14 и 15 приведены переходные характеристика и фазовые траектории САУ с запаздыванием , и соответственно. Очевидно, что запас устойчивости уменьшается и ухудшаются показатели регулирования САУ со звеном запаздывания, вплоть до полной неустойчивости системы при увеличении времени запаздывания (рис. 15).
Выводы
Исследование модели ЖСЗ показало, что САУ ЖСЗ является неустойчивой в разомкнутом состоянии. В ведение единичной обратной связи по положению переводит систему на колебательную границу устойчивости и конечное угловое положение объекта управления не определено. Система становится устойчивой и управляемой при введении местной обратной связи по угловой скорости. Такая система обладает приемлемыми показателями качества регулирования и способна отрабатывать задания на угловые перемещения. Введение дополнительного регулятора в канал местной обратной связи позволяет управлять демпфированием системы, что было показано. САУ с чистым запаздыванием может быть как устойчивой с приемлемыми показателями качества регулирования, так и неустойчивой. Увеличение времени запаздывания ведет к усилению колебательных свойств системы и переходу ее в неустойчивое состояние.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|