Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Эволюция клеточной организации на примере сравнения прокариотической и эукариотической клетки.

Клеточный уровень организации живого. Клеточная теория. Эволюция клеточной организации на примере сравнения прокариотической и эукариотической клетки. Различия в строении клеток животных, растений, грибов и бактерий. Особенности строения клеток в связи с выполняемыми функциями.

Клеточный уровень организации живого.

Любой живой организм состоит из клеток. Клетка является элементарной самост единицей не только строения, но и функционирования живого организма. Она предс собой мельчайшую элемен живую систему и является основой жизн-сти и воспроизводства всех живых организмов.

В клетке как микроносителе жизни заключена такая генетическая информация, которая вполне достаточна для производства всего организма. На клеточном уровне идут процессы обмена веществ, процессы передачи и переработки информации и превращения веществ и энергии. Поэтому элементарные явления на клеточном уровне создают энергетическую и вещественную основу жизни на других уровнях живой материи.

Клетки отличаются большим разнообразием форм, размеров и функций. Их подразделяют на две группы: клетки, не содержащие ядра, то есть безъядерные клетки, представленные однокл организмами – прокариотами,, имеющие ядро, то есть ядерные клетки, представляющие одноклеточные организмы – эукариоты, а также все многообразие многоклеточных организмов.

По типу питания клетки подразделяются на два вида: автотрофные, которые не нуждаются в органической пище и сами производят органические питательные вещества, используя энергию солнца, углерод, воду и минеральные вещества за счет процесса фотосинтеза (растения); и гетеротрофные, использующие для своего питания готовое органическое вещество.
Клеточная теория

Клеточная теория была сформулирована в 1839 г. немецким зоологам и физиологом Т. Шванном. 1) клетка – главная структурная единица всех растительных и животных организмов;

2) процесс образования клеток обусловливает рост, развитие и дифференцировку всех растительных и животных тканей и организмов.

Ученый показал, что все живые организмы состоят из клеток, что клетки растений и животных принципиально схожи между собой.

Клеточная теория утверждала единство животного и растительного мира, наличие единого элемента тела живого организма — клетки. Как и всякое крупное научное обобщение, клеточная теория не возникла внезапно: ей предшествовали отдельные открытия различных исследователей.

Открытие клетки принадлежит английскому естествоиспытателю Р. Гуку, который в 1665 г. впервые рассмотрел тонкий срез пробки под микроскопом. На срезе было видно, что пробка имеет ячеистое строение, подобно пчелиным сотам. Эти ячейки Р. Гук назвал клетками. Вслед за Гуком клеточное строение растений подтвердили итальянский биолог и врач М. Мальпиги (1675) и английский ботаник Н. Грю (1682). Их внимание привлекли форма клеток и строение их оболочек. В результате было дано представление о клетках как о «мешочках» или «пузырьках», наполненных «питательным соком».

Значительный вклад в изучение клетки внес голландский натуралист, один из основоположников научной микроскопии, А. ван Ле-венгук, открывший в 1674 г. одноклеточные организмы — инфузории, амебы, бактерии. Он также впервые наблюдал животные клетки — эритроциты крови и сперматозоиды.

В начале XIX в. предпринимаются попытки изучения внутреннего содержимого клетки. В 1825 г. чешский ученыйЯ. Пуркине открыл ядро в яйцеклетке птиц. В 1831 г. английский ботаник Р. Броун впервые описал ядро в клетках растений, а в 1833 г. он пришел к выводу, что ядро является обязательной частью растительной клетки.

Наиболее близко к формулировке клеточной теории подошел немецкий ботаник М. Шлейден, который установил, что тело растений состоит из клеток.

Клеточная теория получила дальнейшее развитие в работах немецкого ученого Р. Вирхова (1858), который предположил, что клетки образуются из предшествующих материнских клеток. В 1874 г. русским ботаником И. Д. Чистяковым, а в 1875 г. польским ботаником Э. Страсбургером было открыто деление клетки — митоз, и, таким образом, подтвердилось предположение Р. Вирхова.

Клеточная теория включает следующие основные положения:

Современная клеточная теория включает следующие положения:

1. Клетка – основная структурно-функциональная и генетическая единица живого.

2. Клетки одно- и многоклеточных организмов сходны по строению, химическому составу и проявлению жизнедеятельности.

3. Размножение клеток осуществляется путем деления исходной (материнской) клетки.

4. Клетки многоклеточных организмов специализируются по функциям и образуют ткани и органы.

5. Единое целое организма и интеграция его частей осуществляется, прежде всего, ЦНС.

6. В основе непрерывности, единства и разнообразия органического мира лежат обмен веществ, размножение, наследственность, изменчивость и раздражимость клеток.

Значение клеточной теории:

- доказательство морфологической основы единства живой природы;

- общебиологическое объяснение живой природы;

- доказательство эволюционных процессов.

Современная клеточная теория исходит из того, что клеточная структура является главнейшей формой существования жизни, присущей всем живым организмам, кроме вирусов. Совершенствование клеточной структуры явилось главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалось у большинства современных организмов.

Эволюция клеточной организации на примере сравнения прокариотической и эукариотической клетки.

Этапы эволюции клетки. Гипотезы происхождения эукариотических клеток.

Существуют два этапа в эволюции клетки:

1.Химический.

2.Биологический.

Химический этап начался около 4,5 млрд лет назад. Под действием ультрафиолетового излучения, радиации, грозовых разрядов (источники энергии) происходило образование сначала простых химических соединений – мономеров, а затем более сложных – полимеров и их комплексов (углеводов, липидов, белков, нуклеиновых кислот).

Биологический этап образования клеток начинается с появления пробионтов – обособленных сложных систем, способных к самовоспроизведению, саморегуляции и естественному отбору. Пробионты появились 3-3,8 млрд. лет назад. От пробионтов произошли первые прокариотические клетки – бактерии.

Самыми ранними из возникших на Земле одноклеточных организмов были бактерии, не обладавшие ядром (прокариоты). Вероятно, они жили за счет потребления органических соединений, возникающих абиогенно под действием электрических разрядов и ультрафиолетовых лучей. Организмы, обладающие ядром (эукариоты), возникли значительно позднее (около 1.5 млрд. лег назад).Они могли жить без кислорода..

отличием прокариот от эукариот - дыхание, а у большинства прокариот -брожения.

аэробный механизм оказался намного выгодней, з увеличивается выход биологически полезной энергии по сравнению с брожением.

Путем инвагинации клеточной мембраны. Суть инвагинационной гипотезы заключается в том, что прокариотическая клетка содержала несколько геномов, прикрепленных к клеточной оболочке. Затем происходила инвагинация – впячивание, отшнуровка клеточной мембраны, и эти геномы превращались в митохондрии, хлоропласты, ядро.

симбиотической теории. клетка возникла вследствие нескольких актов симбиогенеза. Первоначально произошло объединение крупной амебовидной прокариотной клетки с мелкими аэробными бактериями, которые превратились в митохондрии. Затем эта клетка включила в себя спирохетоподобные бактерии, из которых сформировались кипетосомы, центросомы и жгутики. После обособления ядра в цитоплазме, что является признаком эукариот, клетка с этим набором органелл оказалась исходной для образования царств грибов и животных. А объединение прокариотной клетки с цианеями привело к образованию пластидной клетки и это дало начало формированию царства растений.

Крупным шагом эволюции стало возникновение у организмов фотосинтезирующей способности.

Около 3 млрд лет назад обеднение среды органическими азотистыми соединениями вызвало появление живых существ, способных использовать атмосферный азот.

Такими организмами являются фотосинтезирущие азот-фиксирующие сине-зеленые водоросли, способные существовать в среде, полностью лишенной органических соединений. Эти организмы осуществляли аэробный фотосинтез и были устойчивы к продуцируемому ими кислороду.

Первоначально возник фотосинтез, в котором источником атомов водорода для восстановления углекислого газа был сероводород. Подобный фотосинтез осуществляют современные зеленые и пурпурные серые бактерии. В дальнейшем появился более сложный двухстадийный фотосинтез, при котором атомы водорода извлекаются из молекул воды. Автотрофное питание, развившееся посредством фотосинтеза, а также запас готовых питательных веществ в растительных тканях стали условиями для появления огромного разнообразия организмов.

При помощи фотосинтеза произошло насыщение атмосферы кислородом в количествах, достаточных для возникновения и развития организмов, у которых энергетический обмен основан на процессе дыхания. Появление значительной концентрации кислорода привело к образованию в верхней части атмосферы озонного слоя, защищавшего жизнь на Земле от губительного воздействия излучения из космоса.

Эволюция одноклеточных организмов шла по пути усложнения строения организма, совершенствования генетического аппарата и способов размножения.

Самой примитивной ступенью была агамная прокариотная стадия. Морфология организмов на этой стадии наиболее проста, и, тем не менее, уже здесь появляется дифференциация на цитоплазму, ядерные элементы, базальные ядра, цитоплазматическую мембрану.

Для следующей ступени (агамной эукариотной) характерно дальнейшее усложнение внутреннего строения с (формированием высокоспециализированных органоидов: мембраны, ядра, цитоплазмы, рибосом, митохондрий и др.). Основным здесь является совершенствование ядра образование настоящих хромосом, тогда как у прокариотных клеток наследственное вещество распределено по всей клетке. Прогрессивным усложнением развития простейших стало возникновение полового размножения (гамогомная ступень). В ходе эволюции происходит переход к разделению генеративных клеток на женские и мужские, а также переход к начальной стадии размножения путем перекрестного оплодотворения.

На промежуточной стадии между одноклеточными организмами и примитивными многоклеточными организмами возникли колониальные одноклеточные системы. При дальнейшем развитии произошла специализация клеток членов колонии по принципy разделения на: осуществляющие функции питания и движения (жгутики) и служащие для размножения (генеративные).

Для современных эукариот характерно не только наличие митохондрии, им присущ целый ряд особенностей, отличающих их от прокариот

Вместе все эти особенности наделяют эукариотические клетки большим количеством различных потенциальных возможностей, и трудно сказать, какая из них возникла раньше других. Заметим, что важнейшим шагом на пути эволюции было появление митохондрии в анаэробных эукариотических клетках, поскольку вместе с ними клетки получали эффективный источник энергии и могли направить ее на усложнение своих функций.

Прокариоты – одноклеточные доядерные организмы. Наследственный аппарат представлен одной молекулой ДНК кольцевой формы. ДНК вместе с белками формирует в бактериальной клетке особый комплекс – нуклеоид. Прокариоты являются гаплоидами. Молекулярная масса ДНК соответствует приблизительно 2000 структурных генов. Клетка ограничена двойной плазматической мембраной (наружной и внутренней). Поверх мембраны образуется клеточная стенка. Она состоит из углевода муреина, образующего жесткую решетку. В цитоплазме отсутствуют органеллы мембранного строения. Их функцию выполняют впячивания внутренней мембраны – мезосомы. В цитоплазме имеются рибосомы. Бактерии могут содержаться мелкие молекулы ДНК (плазмиды). Фотосинтезирующие бактерии имеют фотомембраны. Запасные питательные вещества представлены углеводами.

Органеллы общего назначения (встречаются во всех видах клеток)а) мембранного строения (митохондрии, пластиды, комплекс Гольджи, эндоплазматический ретикулум, лизосомы, вакуоли); б) немембранного строения (рибосомы, клеточный центр).

2. Орга спец назначения (характерны для определенного типа клеток): миофибриллы, тонофибриллы, нейрофибриллы, реснички, жгутики и микроворсинки.

Цитоплазматические включения – это непостоянные структуры в цитоплазме, представляющие собой продукты жизнедеятельности клеток. По своему биологическому значению включения могут быть условно разделены на основные группы: трофические, секреторные, специального назначения, экскреторные, пигментные.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...