Интерфейсы внешних запоминающих устройств IBM PC
Стр 1 из 3Следующая ⇒ Принципы управления Вычислительные машины, помимо процессоров и основной памяти (образующих ее ядро), содержат многочисленные периферийные устройства (ПУ): ВЗУ и УВВ. Передача информации с периферийного устройства в ЭВМ называется операцией ввода, а передача из ЭВМ в ПУ — операцией вывода. Производительность и эффективность ЭВМ определяются не только возможностями ее процессора и характеристиками ОП, но и составом ПУ, их техническими данными и способами организации их совместной работы с ЭВМ. При разработке систем ввода-вывода ЭВМ особое внимание обращается на решение следующих проблем: • должна быть обеспечена возможность реализации машин с переменным составом оборудования (машин с переменной конфигурацией), в первую очередь с различным набором периферийных устройств, с тем чтобы пользователь мог выбирать состав оборудования (конфигурацию) машины в соответствии с ее назначением, легко дополнять машину новыми устройствами; • для эффективного и высокопроизводительного использования оборудования в ЭВМ должны реализовываться одновременная работа процессора над программой и выполнение периферийными устройствами процедур ввода-вывода; • необходимо упростить для пользователя и стандартизовать программирование операций ввода-вывода, обеспечить независимость программирования ввода-вывода от особенностей того или иного •периферийного устройства; • необходимо обеспечить автоматическое распознавание и реакцию ядра ЭВМ на многообразие ситуаций, возникающих в ПУ (готовность устройства, отсутствие носителя, различные нарушения нормальной работы и др.). Первый шаг в совершенствовании структуры ЭВМ с целью повышения производительности был сделан при разработке второго поколения ЭВМ, когда впервые была обеспечена автономность внешних устройств. Сначала она была необходима для согласования скорости работы устройств ЭВМ.
Однако автономность потребовала проведения проверок исправности устройств при каждом обращении к ним. Появилась определенная технология обращения к автономным внешним устройствам — интерфейс. Когда эту технологию унифицировали, появилось понятие стандартного интерфейса. Стандартизация интерфейсов ввода-вывода привела к возможности гибко изменять конфигурацию вычислительных машин (количество и состав внешних устройств, расширять комплект ЭВМ за счет подключения новых устройств). Затем появилась концепция виртуальных устройств, позволяющая совмещать различные типы ЭВМ, операционные системы. Совместимость распространилась и на работу машин разной конфигурации (можно использовать соответствующее программное обеспечение и при физическом отсутствии необходимых устройств). Изменилась и технология работы — при отсутствии печатающих устройств файлы направлялись в виртуальное устройство, где и накапливались, а реально распечатывались на другой машине. Дальнейшее совершенствование интерфейсов потребовалось при решении специфических задач: новые внешние устройства (сканеры) позволяли вводить текст в графическом виде, а обрабатывать его надо было в символьном виде. Поэтому возникла необходимость в системах распознавания, идентификации, преобразования из графического формата в символьный. При анализе снимков из космоса появилась необходимость автоматической классификации наблюдаемых объектов, самообучения распознающей программы, анализа сцен. Все это стимулировало развитие специального математического аппарата в интерфейсах. Необходимость вывода информации различными шрифтами привела к изменению технологии вывода, связанной с применением TrueType-шрифтов, масштабированием матричных и векторных изображений, преобразованием векторных символов в матричные.
В о внешние устройства стали встраивать свою основную память, объем которой должен обеспечивать вывод целой страницы (например, текста) при плотности 600 точек/дюйм — этот объем превышает иногда объем основной памяти ЭВМ. Необходимость пересчета при преобразовании векторных шрифтов в матричные привела к необходимости включить в состав устройств отображения информации специальные графические процессоры матричной архитектуры, в качестве которых часто используются транспьютеры. При создании автоматизированных рабочих мест появилась необходимость подключения к ЭВМ аудиовизуальной аппаратуры — телекамер, видеомагнитофонов, фотокамер, аудиоустройств. На этой основе образовался специальный аппаратный комплекс, называемый анимационной линейкой. Из-за технической несовместимости необходимой для таких комплексов аппаратуры потребовались программные и аппаратные преобразователи сигналов, специальные средства сопряжения. При разработке пятого поколения ЭВМ была заложена интеллектуализация общения: речевой ввод и вывод; графический ввод; ввод текстовой информации без клавиатуры; естественно-языковое общение; общение на разных естественных языках. Все это и явилось основой для совершенствования систем, обеспечивающих связь ЭВМ с периферийными устройствами. В общем случае для организации и проведения обмена данными между двумя устройствами требуются специальные средства: • специальные управляющие сигналы и их последовательности; • устройства сопряжения; • линии связи; • программы, реализующие обмен. Весь этот комплекс линий и шин, сигналов, электронных схем, алгоритмов и программ, предназначенный для осуществления обмена информацией, называется интерфейсом. В зависимости от типа соединяемых устройств различаются: • внутренний интерфейс ЭВМ (например, интерфейс системной шины, НМД), предназначенный для сопряжения элементов внутри системного блока ПЭВМ; • интерфейс ввода-вывода — для сопряжения различных устройств с системным блоком (клавиатурой, принтером, сканером, мышью, дисплеем и др.);
• интерфейсы межмашинного обмена (для обмена между разными машинами) — для сопряжения различных ЭВМ (например, при образовании вычислительных сетей); • интерфейсы «человек — машина» — для обмена информацией между человеком и ЭВМ. Для каждого интерфейса характерно наличие специального аппаратного комплекса (рис. 6.1). Характер использования этого аппаратного комплекса определяется технологией обмена, установленным церемониалом, идеологией данного интерфейса, протоколом общения. Особое место занимает человеко-машинный интерфейс, реализующий специфические методы организации общения. Например, церемониал человеко-машинного общения предусматривает «дружественность пользователю», которая может обеспечиваться техническими средствами, программами и технологией общения. Если интерфейс обеспечивает обмен одновременно всеми разрядами передаваемой информационной единицы (чаще всего — байта или машинного слова), он называется параллельным интерфейсом. Внутренний интерфейс ЭВМ всегда делается параллельным или последовательно-параллельным (если одновременно передается не вся информационная единица, а ее часть, содержащая несколько двоичных разрядов: например, i8088 обеспечивает побайтовый, a 80386SX — двухбайтовый обмен через системную магистраль, тогда как основная информационная единица — машинное слово — имеет длину: у 8086 — 2 байта, а у 80386 — 4 байта). Интерфейсы межмашинного обмена обычно последовательные, т.е. в них обмен информацией производится по одному биту, последовательно. Для параллельного и последовательно-параллельного интерфейса необходимо, чтобы участники общения были связаны многожильным интерфейсным кабелем (количество жил не меньше числа одновременно передаваемых разрядов — бит). В последовательных интерфейсах участники общения связываются друг с другом одно-двух-проводной линией связи, световодом, коаксиальным кабелем, радиоканалом.
В зависимости от используемых при обмене программно-технических средств интерфейсы ввода-вывода делятся на два уровня: физический и логический (рис. 6.2). Рис. 6.2. Логический и физический уровни интерфейсов ввода-вывода В зависимости от степени участия центрального процессора в обмене данными в интерфейсах может использоваться три способа управления обменом: • режим сканирования (так называемый «асинхронный» обмен); • синхронный обмен; • прямой доступ к памяти. Для внутреннего интерфейса ЭВМ режим сканирования предусматривает опрос центральным процессором периферийного устройства (ПФУ): готово ли оно к обмену, и если нет, то продолжается опрос периферийного устройства (рис. 6.3). Операция пересылки данных логически слишком проста, чтобы эффективно загружать сложную быстродействующую аппаратуру процессора, в результате чего в режиме сканирования снижается производительность вычислительной машины. Вместе с тем при пересылке блока данных процессору приходится для каждой единицы передаваемых данных (байт, слово) выполнять довольно много команд (чтобы обеспечить буферизацию данных, преобразование форматов, подсчет количества переданных данных, формирование адресов в памяти и т.п.). В результате скорость передачи данных при пересылке блока данных даже через высокопроизводительный процессор может оказаться неприемлемой для систем управления, работающих в реальном масштабе времени. Режим сканирования упрощает подготовку к обмену, но имеет ряд недостатков: • процессор постоянно задействован и не может выполнять другую работу; • при большом быстродействии периферийного устройства процессор не успевает организовать обмен данными. Рис. 6.3. Алгоритм сканирования В синхронном режиме центральный процессор выполняет основную роль по организации обмена, но в отличие от режима сканирования не ждет готовности устройства, а осуществляет другую работу. Когда в нем возникает нужда, внешнее устройство с помощью соответствующего прерывания обращает на себя внимание центрального процессора. Для быстрого ввода-вывода блоков данных и разгрузки процессора от управления операциями ввода-вывода используют прямой доступ к памяти (DMA — Direct Memory Access). Прямым доступом к памяти называется способ обмена данными, обеспечивающий автономно от процессора установление связи и передачу данных между основной памятью и внешним устройством. В режиме прямого доступа к памяти используется специализированное устройство — контроллер прямого доступа к памяти, который перед началом обмена программируется с помощью центрального процессора: в него передаются адреса основной памяти и количество передаваемых данных. Затем центральный процессор от контроллера прямого доступа к памяти отключается, разрешив ему работать, и до окончания обмена может выполнять другую работу. Об окончании обмена контроллер прямого доступа к памяти сообщает процессору. В этом случае участие центрального процессора косвенное. Обмен ведет контроллер прямого доступа к памяти. Прямой доступ к памяти (ПДП):
• освобождает процессор от управления операциями ввода-вывода; • позволяет осуществлять параллельно во времени выполнение процессором программы с обменом данными между внешним устройством и основной памятью; • производит обмен данными со скоростью, ограничиваемой только пропускной способностью основной памяти и внешним устройством. ПДП разгружает процессор от обслуживания операций ввода-вывода, способствует увеличению общей производительности ЭВМ, дает возможность машине более приспособленно работать в системах реального времени.
Прямой доступ к памяти При работе в режиме прямого доступа к памяти (ПДП) контроллер ПДП выполняет следующие функции: • принимает запрос на ПДП от внешнего устройства; • формирует запрос микропроцессору на захват шин системной магистрали; • принимает сигнал, подтверждающий вход микропроцессора в состояние захвата (перехода в z-состояние, при котором процессор отключается от системной магистрали); • формирует сигнал, сообщающий внешнему устройству о начале выполнения циклов ПДП; • выдает на шину адреса системной магистрали адрес ячейки ОП, предназначенной для обмена; • вырабатывает сигналы, обеспечивающие управление обменом данными; • по окончании ПДП либо организует повторение цикла ПДП, либо прекращает режим ПДП, снимая запросы на него. Циклы ПДП выполняются с последовательно расположенными ячейками памяти, поэтому контроллер ПДП имеет счетчик числа переданных байтов. На рис. 6.4 приведена схема взаимодействия устройств микропроцессорной системы в режиме ПДП. Контроллеры ПДП (КПДП) в IBM PC совместимы снизу вверх, т.е. программы, написанные с использованием КПДП ранних моделей ЭВМ, нормально работают и на более поздних моделях. Рис. 6.4. Взаимодействие устройств в режиме ПДП Каждый канал КПДП состоит из четырех 16-разрядных регистров (рис. 6.5): регистр текущего адреса (CAR), регистр циклов ПДП (CWR), регистр хранения базового адреса (BAR), регистр хранения базового числа циклов ПДП (WCR) и 6-разрядного регистра режима (MR). Регистр текущего адреса хранит текущий адрес ячейки памяти при выполнении цикла ПДП. После выполнения каждого цикла ПДП содержимое этого регистра увеличивается или уменьшается на единицу. Оно может быть прочитано или загружено с помощью двух команд IN или OUT соответственно, каждая из которых работает только с одним байтом. В режиме автоинициализации содержимое регистра текущего адреса при обновлении принимает базовый адрес из регистра хранения базового адреса. Регистр циклов ПДП хранит число слов, предназначенных для передачи. При выполнении циклов регистр работает в режиме вычитающего счетчика. При переходе из нулевого состояния в FFFFH вырабатывается управляющий сигнал для блока управления контроллером. Регистр может быть прочитан двумя командами IN. В него можно осуществить запись двумя командами OUT из микропроцессора или в режиме инициализации — из регистра хранения базового числа циклов ПДП. Регистры BAR и WCR предназначены для хранения констант — базового адреса и базового числа циклов. Они загружаются в режиме программирования КПДП одновременно с регистрами CAR и CWR. В процессе выполнения циклов ПДП их содержимое не изменяется. Прочитать состояние этих регистров невозможно. Регистр режима определяет режим работы канала. Он содержит информацию о номере канала, типе цикла ПДП (чтение (ОП ← ВУ), запись (ОП → ВУ), проверка), необходимости автоинициализации, режиме изменения регистра текущего адреса (CAR) — увеличение или уменьшение и режиме работы канала — передача по запросу, одиночная передача, блочная передача, каскадирование (работа в составе каскада КПДП). Регистр команд блока управления режимом определяет основные параметры работы канала. Загружается при программировании КПДП микропроцессором. Регистр условий хранит разрешение на ПДП каждому каналу (устанавливаемые программно) и запоминает факт перехода через 0 в регистре хранения базового числа циклов каждого канала. Контроллер ПДП может работать в двух основных режимах: в режиме программирования и в режиме выполнения циклов ПДП. В режиме программирования микропроцессор работает с КПДП, как с внешним устройством. После загрузки в КПДП управляющих слов контроллер переходит в пассивное состояние. В этом состоянии КПДП будет находиться до тех пор, пока не поступит запрос на ПДП от ВУ или от микропроцессора. Обнаружив запрос на ПДП, контроллер выставляет микропроцессору запрос на захват системной магистрали и ожидает от него подтверждения захвата (т.е. отключения МП от СМ, перехода его выходов в состояние высокого сопротивления, г-состояния). При получении сигнала подтверждения захвата, контроллер начинает выполнять циклы ПДП. Системная магистраль (СМ) в режиме прямого доступа к памяти используется мультиплексно КПДП и микропроцессором, причем основное управление системной магистралью выполняет КПДП, а МП получает к ней доступ на очень короткие промежутки времени для обмена информацией с основной памятью. Рис. 6.5. Структурная схема контроллера ПДП Несмотря на большую самостоятельность ПДП, ведущее положение в МП-системе остается все-таки за микропроцессором, который, запустив обмен информацией в режиме ПДП, продолжает выполнять свою работу.
Интерфейс системной шины Системная магистраль является узким местом ЭВМ, так как все устройства, подключенные к ней, конкурируют за возможность передавать свои данные по ее шинам. Системная магистраль — это среда передачи сигналов управления, адресов, данных, к которой параллельно и одновременно могут подключаться несколько компонентов вычислительной системы. Физически системная магистраль представляет собой параллельные проводники на материнской плате, которые называются линиями. Но это еще и алгоритмы, по которым передаются сигналы, правила интерпретации сигналов, дисциплины обслуживания запросов, специальные микросхемы, обеспечивающие эту работу. Весь этот комплекс образует понятие интерфейс системной магистрали, или стандарт обмена. Первоначально системная магистраль имела довольно простую архитектуру, но в процессе появления новых стандартов обмена ее конструкция усложнялась. СМ стала делиться на системную и локальную, графическую и периферийную (см. Стандарты VESA, PCI, USB). Исторически все интерфейсы СМ ведут свою родословную от стандарта IBM MULTIBUS, для которого фирмой был разработан комплект микросхем (chipset). Этот стандарт мог обслуживать передачу 8- и 16-битовых данных, работать в мультипроцессорном режиме с несколькими ведущими устройствами. Понятие ведущее/ведомое устройство могло динамически переопределяться с помощью сигналов управления (например, контроллер ПДП в режиме программирования — ведомое устройство, а в активном режиме — ведущее). Для этого стандарта характерно наличие следующих линий: 20 линий адресов, 16 линий данных, 50 управляющих и служебных линий. Для IBM PS-2 в 1987 г. был разработан стандарт «Микроканал» — MCA (Micro Channel Architecture). В нем 24-разрядная шина адреса. Шина данных увеличена до 32 бит. Отказались от перемычек и переключателей, определяющих конфигурацию технических средств, и ввели CMOS-память (Complementary Metal Oxyde Semicondactor), позволяющую хранить эту информацию и при отключении питания. Все оборудование, подключаемое к системной магистрали, содержит специальные регистры POS (Programmable Option Select), позволяющие конфигурировать систему программным путем. При тактовой частоте 10 МГц скорость передачи данных составляла 20 Мбайт/с. Для IBM PC XT был разработан стандарт ISA (Industry Standart Architecture), который имеет две модификации — для XT и AT. В ISA XT шина данных — 8 бит, шина адресов — 20 бит, шина управления — 8 линий. В ISA AT шина данных увеличена до 16 бит. Встречаются и 32-битовые ISA, но это — нестандартизованное расширение. Тактовая частота для работы СМ в стандарте ISA составляет 8 МГц. Производительность ISA XT — 4 Мбайта/с, ISA AT — от 8 до 16 Мбайт/с. Стандарт EISA (Extended ISA) — это жестко стандартизованное расширение ISA до 32 бит. Конструктивно совместима с ISA-адаптерами внешних устройств. Предназначена для многозадачных систем, файл-серверов и систем, в которых требуется высокоэффективное расширение ввода-вывода. При тактовой частоте 8,33 МГц скорость передачи данных составляла 33 Мбайта/с. Стандарт VESA (VESA Lokal Bas, или VLB) разработан Ассоциацией стандартов видеоданных (Video Electronics Standart Association) как расширение стандарта ISA для обмена видеоданными с адаптером SVGA. Обмен данными по этому стандарту ведется под управлением микросхем, расположенных на карте, устанавливаемой в специальный слот (разъем) расширения VLB и соединяемой с СМ через стандартный слот расширения. В отличие от стандартных слотов расширения слот VLB связан с микропроцессором напрямую, минуя системную магистраль. Карта VLB, работая совместно с системной магистралью, реализующей стандарт ISA, обеспечивает 32-разрядную передачу данных с тактовой частотой микропроцессора (но не более 40—50 МГц). В стандартные слоты материнской платы с интерфейсом VLB устанавливаются карты расширения с интерфейсом ISA. Производительность стандарта VLB достигает 132 Мбайт/с. Стандарт PCI (Peripheral Component Interconnect) разработан фирмой Intel для ЭВМ с МП Pentium. Это не развитие предыдущих стандартов, а совершенно новая разработка. Системная магистраль в соответствии с этим стандартом работает синхронно с тактом МП и осуществляет связь между локальной шиной МП и интерфейсами ISA, EISA или MCA. Но поскольку для этого интерфейса используются микросхемы, выпускаемые другими фирмами (Saturn — для 486, Mercury, Neptune, Triton — для Pentium), скорость работы СМ реально составляет 30—40 Мбайт/с при теоретически возможной 132/264 Мбайта/с. Стандарт PCI разрабатывался как процессорно-независимый интерфейс. Помимо Pentium с этим интерфейсом могут работать и МП других фирм (Alpha корпорации DEC, MIPS R4400 и Power PC фирм Motorola, Apple и IBM). Стандарт PCI позволяет реализовать дополнительные функции: автоматическую конфигурацию периферийных устройств (которая позволяет пользователю устанавливать дополнительные платы, не задумываясь над распределением прерываний, каналов ПДП и адресного пространства); работу при пониженном напряжении питания, возможность работы с 64-разрядным интерфейсом. «Слоевая» структура интерфейса PCI снижает электрическую нагрузку на МП и позволяет одновременно управлять шестью периферийными устройствами, подключенными к СМ. Стандарт PCI позволяет использовать «мосты» (Bridges) для организации связи с другими стандартами (например, PCI to ISA Bridge). Стандарт USB (Universal Serial Bus) — универсальный последовательный интерфейс, обеспечивающий обмен со скоростью 12 Мбайт/с и подключение до 127 устройств. Стандарт PCMCIA (Personal Computer Memory Card International Association) — интерфейс блокнотных ПЭВМ для подключения расширителей памяти, модемов, контроллеров дисков и стриммеров, сетевых адаптеров и др. Системная магистраль, выполненная по этому стандарту, имеет минимальное энергопотребление, ШД — на 16 линий, ША — на 24 линии.
Интерфейсы внешних запоминающих устройств IBM PC Для подключения жестких магнитных дисков к микропроцессорному комплекту используется один из 5 типов интерфейсов: • ST506/412; • ESDI (Enhanced Small Device Interface); • SCSI (Small Computer System Interface); • IDE (Integrated Drive Electronics), известный так же как АТА (AT Attachement); • EIDE (Enhanced-IDE). Интерфейс SCSI является промышленным стандартом для подключения таких устройств, как винчестеры, стриммеры, сменные и оптические диски и др. Он осуществляет параллельную пересылку данных (побайтно) с контролем по четности, что значительно повышает скорость его работы. Применяется не только в IBM-совместимых ЭВМ, но и в VAX, Macintosh, SPARCstation и др. Он обслуживает одновременно до 8 устройств (одним из которых является основной (хост) адаптер SCSI). Хост-адаптер SCSI имеет свою собственную BIOS, которая занимает 16 Кбайт в верхней области памяти (UMB). Интерфейс обеспечивает удаление внешних ЗУ до 6 м при синфазном способе работы и до 25 м — при дифференциальном соединении (токовая петля). Обмен между устройствами на магистрали SCSI происходит в соответствии с протоколом высокого уровня. Программы управления обменом составляются на CCS (Common Command Set) — это универсальный набор команд, обеспечивающий доступ к данным на логическом уровне (в отличие от ESDI). Программное обеспечение SCSI не оперирует физическими характеристиками жестких дисков (числом цилиндров, головок и т.д.), а имеет дело только с логическими блоками. Для 32-разрядных микропроцессоров появился интерфейс SCSI-2, в спецификацию которого был введен так называемый «широкий» (wide) вариант шины данных — дополнительные 24 линии. Кроме «широкого», был разработан «быстрый» (fast) SCSI-2 с производительностью 10 Мбит/с. Совместное их использование позволяет повысить производительность магистрали до 40 Мбит/с. Интерфейс может организовывать очередь команд, в нем расширен состав команд. Планируется выпуск SCSI-3, позволяющего подключать большее количество устройств и обеспечивающего работу с более длинным кабелем. Интерфейс IDE (он же АТА, AT-bus, PC/AT, Task File) был предложен пользователям AT и XT в 1988 г. в качестве недорогой альтернативы интерфейсам ESDI и SCSI. Его отличительная особенность — реализация функций контроллера в самом накопителе. Такое решение позволяет сократить количество сигналов, передаваемых между системной платой и накопителем (остался один 40-жильный кабель), повысить производительность жесткого диска с 5 до 10 Мбит/с. В контроллере используются такие аппаратные средства, как кэш-память, трансляторы физических параметров диска в логические, что позволяет применять нестандартные параметры накопителя. Выпуск малогабаритных компьютеров типа lap-top и notebook потребовал сокращения размеров как самого жесткого диска, так и его контроллера, поэтому новая концепция интерфейса IDE стала в них доминирующей. IDE-интерфейсы имеют ограничение сверху на емкость подключаемых к ним жестких дисков — два накопителя по 528 Мбайт каждый. Этого недостатка лишен интерфейс EIDE, который позволяет подключать к одному контроллеру до 4 устройств, в том числе таких, как CD-ROM.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|