Э Л Е К Т Р О М А Г Н И Т Н Ы Е Я В Л Е Н И Я
Методические указания к выполнению лабораторных работ для студентов всех специальностей
Йошкар-Ола Составители: Л.А.Григорьев, В.П.Медведчиков, Т.И.Краева, Г.Ю.Кожинова, А.С.Шилова, А.С.Масленников, Л.П.Алимбек
УДК 531 / 076.5 /: 378
ЭЛЕКТРОМАГНИТНЫЕ ЯВЛЕНИЯ: Методические указания к выполнению лабораторных работ для студентов всех специальностей / Сост. Л.А.Григорьев, В.П.Медведчиков, Т.И.Краева и др.: Под ред. Л.А.Григорьева. - Йошкар-Ола: МарГТУ, 2001. - 56 с.
Приведены лабораторные работы по разделу "Магнетизм" курса общей физики. Каждая работа содержит краткое теоретическое описание изучаемого явления, описание установки, порядок выполнения работы и обработки результатов измерений, вопросы самопроверки.
Рис. 33. Табл. 3. Библиогр.: 4 назв.
Печатается по решению редакционно-издательского совета МарГТУ
Рецензент - Ю.Б.Грунин, доктор химических наук, профессор МарГТУ
© Марийский государственный технический университет, 2000 ВВЕДЕНИЕ
Методические указания включают в себя восемь работ из лабораторного практикума по разделу "Магнетизм" и соответствуют учебному плану. При выполнении работ в лаборатории магнетизма студенты изучают физические явления: возникновение магнитного поля в пространстве, окружающем проводники с током, движение электронов в электромагнитном поле, намагничивание и перемагничивание ферромагнетиков, явление электромагнитной индукции и самоиндукции, эффект Холла, прохождение квазистационарного тока через цепи, содержащие R, C, L - элементы и изменение амплитуды напряжения в этих цепях, резонанс напряжений, возникновение стоячих волн в струне;
изучают физические законы: Био-Савара-Лапласа, полного тока, Фарадея, Ома для цепи переменного тока; овладевают методами расчета магнитных полей, основанными на законах Био-Савара-Лапласа и полного тока; исследуют зависимость магнитной индукции в веществе и магнитной проницаемости ферромагнетика от напряженности внешнего магнитного поля, индуктивности катушки от магнитной проницаемости среды, амплитуды вынужденных колебаний от частоты, скорости распространения поперечных колебаний в струне от ее натяжения; овладевают методами измерения величины индукции магнитного поля, магнитной проницаемости, коэрцитивной силы, остаточной индукции, коэффициента самоиндукции катушки индуктивности, удельного заряда электрона, амплитудных и эффективных значений тока и напряжения в RCL-цепях, скорости распространения поперечных колебаний вдоль струны и др.; приобретают навыки работы с приборами: генератором напряжения звуковых частот, осциллографом, амперметрами постоянного и переменного тока, цифровыми вольтметрами, автотрансформатором и др. Руководство к выполнению каждой лабораторной работы включает в себя краткое теоретическое описание физического явления, описание установки, порядок выполнения работы и обработку результатов измерений. Методические указания предназначены для студентов 1 - 2 курсов всех специальностей. МАГНИТНОЕ ПОЛЕ
Индукция магнитного поля
где Чтобы определить индукцию B в данной точке М, необходимо: 1) Измерить силу, действующую в точке М на неподвижный заряд q. Это даст нам кулоновскую силу
2) Измерить силу F, действующую на заряд q в момент прохождения его через точку М с заданной скоростью v, и вычесть из нее кулоновскую силу Fк. Полученную разность сил называют силой Лоренца:
3) Повторить эту операцию для всевозможных направлений скорости
Одним из источников магнитного поля являются движущиеся заряды и, в частности, проводники с током. Согласно закону Био-Савара-Лапласа элемент провода
провести суммирование (интегрирование) по всей длине провода. В качестве примера рассмотрим магнитное поле на оси z кругового тока (рис.3).Оси х и у
где S = pR2 - площадь, ограниченная контуром с током. Величину
где В частности, формулу (6) можно записать в виде
Движение заряженной частицы с зарядом e по замкнутой траектории эквивалентно круговому току I = eυ, где υ - частота обращения частицы по орбите. При этом величина орбитального магнитного момента частицы равна
Рm = eυS, (9) где S - площадь, ограниченная замкнутой траекторией частицы. Кроме орбитального магнитного момента, микрочастицы могут иметь еще собственный (спиновый) магнитный момент (см. лабораторную работу 5). Следовательно, микрочастицы (например, электрон) являются источниками магнитного поля B даже и в том случае, если бы их скорость равнялась нулю. Интересно, что спиновый магнитный момент могут иметь и нейтральные частицы (например, нейтрон). Таким образом, магнитное поле B порождается как движущимися зарядами, так и спиновыми магнитными моментами микрочастиц. 1. ИЗУЧЕНИЕ МАГНИТНОГО ПОЛЯ СОЛЕНОИДА
Цель работы: экспериментальное изучение распределения магнитного поля вдоль оси соленоида. Приборы и принадлежности: соленоид, измеритель магнитной индукции Ш1-8, источник тока.
1.1 Теоретические сведения
Соленоид представляет собой тонкий провод, плотно навитый, виток к витку, на цилиндрический каркас. В отношении создаваемого им магнитного поля соленоид эквивалентен системе одинаковых круговых токов с общей прямой осью. Сначала рассмотрим один виток. Оси х, у и z выберем так, как показано на рис.1.1. Согласно формуле (6) для проекции вектора B в точках оси z имеем:
причем Вz > О во всех точках оси z. Направление В на оси витка с током определяется правилом правого винта: если головка винта вращается "вслед" за током в витке, то направление движения острия винта совпадает с направлением магнитного поля B на оси витка.
где n - число витков на 1 м длины соленоида, I - сила тока в про- воде, α1 и α2 - углы между осью и прямыми, проведенными из точки О к нижнему (z = z1) и верхнему (z = z2) витку соответственно (z1< z2). В частности, при z1= - ∞, z2= + ∞ (бесконечно длинный соленоид)
В = μonI, (1.3) а при z1= - ∞, z2= 0 или при z1= 0, z2= + ∞ (то есть на краю полу- бесконечного соленоида)
Практически формулы (1.3) и (1.4) используются вместо выражения (1.2), если длина соленоида во много раз превышает его диаметр. Схема установки приведена на рабочем месте. Для экспериментального определения поля на оси соленоида в данной работе используется измеритель магнитной индукции ИМИ Ш-1-8, принцип действия которого основан на эффекте Холла. Эффект Холла заключается в возникновении поперечного электрического поля и разности потенциалов в металле или в полупроводнике, по которому проходит электрический ток, при помещении его в магнитное поле, перпендикулярное направлению тока. Если в магнитное поле помещен металл или полупроводник с электронной проводимостью, то электроны, движущиеся со скоростью v в магнитном поле B, под действием силы Лоренца Fл = - e [v∙B] (см. формулу (2)) отклоняются в определенную сторону (в данном случае вверх - см. рис.1.2,а), что показывает появление отрицательных зарядов на одной грани образца и соответственно недостаток их, т.е. появление положительных зарядов, на другой грани. В полупроводнике с дырочной проводимостью знаки зарядов на указанных гранях (см. рис.1.2,б) обратные.
Возникшее поперечное электрическое поле препятствует отклонению носителей заряда в магнитном поле. Разность потенциалов при эффекте Холла равна Поскольку при заданных R, d, I магнитная индукция пропорциональна разности потенциалов, то прибор, измеряющий разность потенциалов, можно проградуировать в единицах магнитной индукции. Датчик Холла имеет размеры 1,5х1х0,2 мм и помещается в нужную точку оси соленоида с помощью зонда "С". При этом плоскость датчика перпендикулярна к оси зонда (и к оси соленоида).
1.2. Порядок выполнения работы
А. Подготовка к проведению измерений: 1) Включить прибор в сеть. 2) Установить тумблер "СЕТЬ" на передней панели прибора Ш1-8 в верхнее положение, при этом должна загореться сигнальная лампочка. Прогреть прибор в течение 15 минут. 3) Шкалу первой декады отсчетного устройства "ОТСЧЕТ ИНДУКЦИИ, Т" установить в положение О.
4) Тумблер "ПОЛЯРНОСТЬ" установить в положение "N". 5) Тумблер "ИНДИКАТОР" установить в положение "ТОЧНО". 6) Резисторами "УСТ.НУЛЯ" - "ГРУБО", "ТОЧНО" совместить стрелку индикатора с отметкой "О" шкалы. При этом следует расположить зонд так, чтобы датчик Холла был максимально удален от источников магнитного поля. (Поскольку в данной работе измеряется индукция поля в соленоиде, а зонд "С" находится внутри его, важно, чтобы в момент установки нуля ток в соленоиде отсутствовал).
Б. Проведение измерений: 1) Включить в сеть цепь соленоида. 2) Регулятором на верхней панели установки задать определенное значение тока соленоида I, величина которого контролируется с помощью амперметра. При этом в окружающем пространстве, в том числе и в месте расположения зонда, появится магнитное поле. Стрелка индикатора на передней панели прибора Ш1-8 должна отклониться. Если стрелка отклоняется вправо, то следует изменить направление тока в соленоиде тумблером "Т" блока питания. 3) Для определения величины индукции магнитного поля установить тумблер "ИНДИКАТОР" в положение "ГРУБО", шкалу первой декады от- счетного устройства "ОТСЧЕТ ИНДУКЦИИ, Т" перевести в положение "О,О". При помощи остальных ручек "ОТСЧЕТ ИНДУКЦИИ, Т" добиться совмещения стрелки индикатора с нулем путем постепенного увеличения показаний шкал отсчетного устройства в следующем порядке: сна- чала на всех декадах выставить нули (на первой декаде - "О,О"); поворачивая переключатель второй декады на одно деление назад, аналогичные действия выполнить с переключателями третьей и четвертой декад. При этом стрелка индикатора установится на нуль, а искомое значение магнитной индукции берется по отсчетному устройству "ОТСЧЕТ ИНДУКЦИИ, Т".
1.3. Задание и отчетность
Задание 1. Построить график зависимости величины индукции магнитного поля от положения зонда на оси соленоида. 1) Установить определенное значение тока в соленоиде (не превышающее 0,7 А). 2) С помощью измерителя магнитной индукции ИМИ Ш1-8 измерить численное значение В в различных точках оси соленоида, перемещая зонд "С" от одного из концов соленоида к другому через каждые 2 см. Данные измерений занести в таблицу. 3) Повторить указанные в п.2 измерения для обратного направления тока в соленоиде, для чего переключатель на передней панели перевести в положение 2. При этом необходимо также перевести тумблер "ПОЛЯРНОСТЬ" прибора Ш1-8 в положение "S" и провести операцию установки нуля. 4) Построить график зависимости В = f(l), взяв в качестве В среднее из двух измерений при различных направлениях тока. 5) Зная число витков на единицу длины соленоида и силу тока в соленоиде, по формулам (1.3), (1.4) рассчитать В в средней и крайней точках длинного соленоида. Оценить погрешность измерений. Сопоставить полученные результаты с результатами прямых измерений.
Задание 2. Построить график зависимости магнитной индукции от силы тока в соленоиде. 1) Установить зонд в средней точке соленоида. 2) Изменяя силу тока в соленоиде от 1 А до нуля через 0,1 А, измерить индукцию магнитного поля при каждом значении I. 3) Построить график зависимости В = f(I) и объяснить полученные результаты.
1.4. Дополнительное задание
1) Провести измерения В на оси соленоида при наличии в нем полого ферромагнитного сердечника. 2) Провести измерения В в центре соленоида при наличии в нем полых сердечников из парамагнитного и диамагнитного вещества. Объяснить полученные результаты.
1.5. Контрольные вопросы
1. Как определяется индукция магнитного поля B? Единицы измерения В. 2. Сформулируйте закон Био-Савара-Лапласа. 3. Вывести формулу, описывающую магнитное поле прямолинейного проводника с током, поле витка с током, поле соленоида. 4. Что такое поток магнитной индукции, потокосцепление? 5. В чем заключается эффект Холла? Как используется это явление в данной работе? 6. Объясните результаты проведенных измерений.
Литература. [1, §§ 15,4, 15,5, 18,1, 18,2; 2, §§ 33, 36; 3, §§ 42, 43, 50].
2. ОПРЕДЕЛЕНИЕ ГОРИЗОНТАЛЬНОЙ СОСТАВЛЯЮЩЕЙ МАГНИТНОГО ПОЛЯ ЗЕМЛИ С ПОМОЩЬЮ ТАНГЕНС-БУССОЛИ.
Цель работы: определение горизонтальной составляющей вектора магнитной индукции магнитного поля Земли для данного места. Приборы и принадлежности: источник питания, потенциометр, ключ, миллиамперметр, тангенс-буссоль.
2.1. Теоретические сведения
Земля представляет собой естественный магнит, полюса которого не совпадают с ее географическими полюсами (рис.2.1). Южный магнитный полюс S находится примерно в 450 км от северного полюса C, а северный магнитный N - в 450 км от южного географического Ю.
Географические полюса Земли - точки на ее поверхности, через которые проходит прямая (ось), вокруг которой Земля совершает суточное вращение. Магнитные полюса Земли - точки, в которых магнитное поле перпендикулярно поверхности Земли. Магнитные меридианы - это линии больших кругов, проведенные через магнитные полюса Земли, а вертикальная плоскость, проходящая через магнитный меридиан, называется плоскостью магнитного меридиана. В точках магнитного экватора А и В магнитное поле Соответственно Отметим, что
где μo - магнитная постоянная (μo = 4π∙10-7 Гн/м). Однако в веществе ( Магнитная стрелка устанавливается в определенном направлении под действием
Модуль момента равен M = pm B sinα, где α - угол между векторами Если магнитную стрелку закрепить на вертикальной оси, то она повернется в горизонтальной плоскости под действием горизонтальной составляющей
2.2. Описание установки В данной работе определение горизонтальной составляющей магнитного поля Земли производится с помощью прибора, называемого ТАНГЕНС-БУССОЛЬЮ (ТБ). Это короткая катушка большого радиуса (по сравнению с размером стрелки компаса), на которую намотано определенное число витков изолированного провода. Практически проволока намотана в виде кругового жгута небольшой толщины, который помещен в трубку из немагнитного материала. В центре катушки помещена на острие небольшая магнитная стрелка (при этом можно считать, что она находится в однородном поле). На рис.2.3 изображено сечение катушки горизонтальной плоскостью. При прохождении тока по витку в его центре возникает магнитное поле, которое направлено перпендикулярно к плоскости витка:
где I -сила тока, n -число витков, R -радиус витка буссоли. Расчет проводится по закону Био-Савара-Лапласа. Если плоскость витка (буссоли) установить вертикально и так, чтобы продольная ось магнитной стрелки лежала в этой же плоскости (плоскости магнитного меридиана), то горизонтальная составляющая Плоскость магнитного меридиана (вертикальная)
магнитного поля Земли Вг и поле кругового тока В1 в центре буссоли окажутся перпендикулярными друг другу. Стрелка установится по направлению равнодействующей В, т.е. по диагонали прямоугольника, сторонами которого являются вектор магнитного поля кругового тока В1 и вектор магнитной индукции горизонтальной составляющей поля Земли Вг. Тогда
2.3. Порядок выполнения работы
1) Собрать (если не собрана) схему (см.рис.2.4). БП - блок питания. 2) Установить тангенс-буссоль в плоскости магнитного меридиана Земли (по магнитной стрелке).
записать новое отклонение стрелки α2 – (перемена направления тока позволяет избавиться от ошибки возникающей от неточного совпадения плоскости буссоли с плоскостью магнитного меридиана). Для расчета берется α = (α1 + α2)/2. 5) Такие же измерения провести при 4 других значениях тока (20, 30, 40, 50 mA). 6) Построить график зависимости tgα от токаI (рис.2.5).
где n -количество витков и R -средний радиус витка катушки, (данные установки см. на панели тангенс-буссоли: n = витков, R = м). 8) Все наблюдения и результаты вычислений записать в табл. 1 9) Оценить погрешность измерений. 10) Сравнить полученный результат с табличным значением величины горизонтальной составляющей Вг магнитной индукции поля Земли: Вг= 20 мкТл.
2.4. Результаты измерений Таблица 1
2.5. Контрольные вопросы 1. В каких единицах измеряется индукция магнитного поля? 2. Сформулируйте и запишите закон Био-Савара-Лапласа. 3. На чем обосновано утверждение, что свободно подвешенная магнитная стрелка определяет направление вектора индукции магнитного поля? 4. Как направлены горизонтальная и вертикальная составляющие магнитного поля Земли? На рис.8 покажите индукцию ВЗ магнитного поля Земли. 5. Как и почему магнитная стрелка ориентируется в магнитном поле? 6. Как узнать направление тока в витках по отклонению стрелки? 7. Почему магнитная стрелка должна быть малых размеров? 8. Получите выражение для магнитного поля В на оси кругового тока из закона Био-Савара-Лапласа.
Литература. [1, §§ 21.1, 21.2, 21.3, 22.2; 3, §§ 39, 41, 48; 4, §§ 109, 110] 3. ОПРЕДЕЛЕНИЕ УДЕЛЬНОГО ЗАРЯДА ЭЛЕКТРОНА МЕТОДОМ ФОКУСИРОВКИ ПУЧКА ЭЛЕКТРОНОВ В ПРОДОЛЬНОМ МАГНИТНОМ ПОЛЕ.
Цель работы: определение отношения e/m, где е - величина заряд электрона, а m - его масса. Приборы и принадлежности: электронно-лучевая трубка, соленоид, осциллограф, блок питания.
3.1. Теоретические сведения
При движении в магнитном поле на электрон действует сила Лоренца (рис.3.1):
где -е - заряд электрона (e > 0), v - скорость электрона, B - индукция магнитного поля. Таким образом, Fл = -еvB sin a, где a - угол между векторами
откуда радиус окружности, по которой движется электрон, равен
Один оборот электрон совершает за время
Таким образом, период обращения электрона по окружности не зависит от скорости электрона. Период определяется только величиной индукции Если угол a между векторами скорости Таким образом, электрон движется с постоянной скоростью
Предположим, что в однородном магнитном поле В из некоторой точки С вылетают электроны (пучок электронов), имеющие одинаковую скорость Следовательно, зная расстояние СО, v и В, можно найти е/m. На этой идее и основан метод определения удельного заряда электрона в дан- ной работе. На рис.3.3 схематически показана электронно-лучевая трубка. Электроны, испускаемые горячим катодом, проходят через отверстие в диафрагме А, играющей роль анода.
ется переменное напряжение. Под действием переменного электрического поля электроны в разные моменты времени будут отклоняться на разные углы α от оси прибора и на экране трубки появится светящаяся полоска НК (см. рис.3.3). Кроме электрического поля на электрон будет действовать продольное магнитное поле соленоида, внутрь которого вставлена электронно-лучевая трубка. Таким образом, в промежутке между диафрагмой и экраном электроны будут двигаться по винтовым линиям. При увеличении магнитного поля линия НК на экране осциллографа сокращается и постепенно стягивается в точку. Эту точку называют фокусом электронов. Обозначим через Вф магнитное поле, при котором наступает фокусировка. За время Т электроны проходят отрезок L = v||Т. (3.6) Учитывая, что v|| ≈ v при малых α выражение (3.4) в формулу (3.6) получим:
Таким образом, все электроны через время, равное одному периоду, пересекут ось прибора на одинаковом расстоянии L от конденсатора. На рис.3.3 показаны траектории нескольких электронов. Все они пересекаются в одной точке О. Магнитное поле можно подобрать так, чтобы фокус пришелся как раз на флуоресцирующий экран. При этом отрезок L равен расстоянию между конденсатором и экраном, которое легко измерить. Подставляя в формулу (3.7) значение скорости из выражения (3.5), получаем расчетную формулу для удельного заряда электрона:
В данной установке используется электронный осциллограф СИ-1, электронно-лучевая трубка которого вынута из него и закреплена в соленоиде, создающем магнитное поле. Оси трубки и соленоида совпадают. Питание трубки и напряжение, подаваемое на отклоняющие пластины, подводятся многожильным кабелем. Анодное напряжение трубки измеряется электростатическим киловольтметром.
3.2. Порядок выполнения работы
1) Собрать схему (имеется на рабочем месте установки. При этом ручки осциллографа установить в положение: "Род синхронизации" - на "Внешнее, "Делитель" - на "Калибровку", "Род работы" - на "Усиление". 2) Включить блок питания осциллографа. После прогрева на экране трубки должна появиться светящаяся линия. Отрегулировать яркость и четкость линии ручками "Яркость" и "Фокус". Расположить светящуюся линию в центре экрана электронно-лучевой трубки ручками "Смещение У" и "Смещение Х". 3) С помощью ручек осциллографа "Усиление" и "Калибровка" ограничить длину светящейся линии до 1..1,5 см, чтобы угол α был мал. 4) Измерить величину ускоряющего напряжения Ua с помощью вольтметра блока питания. Величину Ua записать в таблицу измерения. 5) Включить блок питания соленоида тумблером "Сеть". Перед включением ручка "Регулировка тока соленоида" должна находиться в положении "О". 6) Постепенно увеличивая силу тока в соленоиде, добиться, чтобы светящаяся линия на экране трубки стянулась в точку при данной величине ускоряющего потенциала. При дальнейшем увеличении силы тока на экране вновь появится светящаяся линия, которая затем снова стянется в точку. Второе прохождение через фокус происходит в том случае, когда электроны на пути к экрану совершают два оборота по винтовой линии, третье прохождение - при трех оборотах и т.д. Каждое прохождение электронов фиксируется и значение тока соленоида Iсn / n (n - число прохождения электронов через фокус), соответствующее этим прохождениям, заносится в таблицу измерений. 7) На движение электронов в трубке влияют внешние поля. Наибольшее влияние на точность измерений оказывает продольное магнитное поле, складывающееся с полем соленоида. Внешнее продольное поле накладывается на поле соленоида. Для того, чтобы исключить влияние внешних полей, измерения, указанные в п.6 проводятся при двух направлениях тока в соленоиде. Это выполняется с помощью тумблера "Переполюсовка соленоида". Полученные значения I+сn при прямом включении соленоида и I-cn при обратном включении соленоида нужно усреднить для каждого прохождения электронов через фокус и среднее значение занести в таблицу измерений. Соответствующие значения Вфп найти по графику В= f(I). Если Вф1, Вф2, Вф3 - магнитные по
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|