Основные положения технической термодинамики рассматриваются на примере идеального газа.
ОБЩИЕ УКАЗАНИЯ
ВВЕДЕНИЕ
Предмет «Техническая термодинамика» и следующий за ним предмет «Тепломассообмен» являются теоретическим фундаментом теплотехники. На базе дисциплин осуществляются расчеты и проектирование тепловых двигателей, компрессоров, сушильных и холодильных установок, теплогенераторов, теплообменников и др. Знание материала этих дисциплин позволяет технически грамотно эксплуатировать указанное оборудование и осуществлять мероприятия по повышению его экономических показателей. При изучении указанных предметов рекомендуется обратить внимание на основные направления развития теплоэнергетики в.нашей стране и за рубежом, на вклад отечественных ученых и инженерно-технических работников в формирование технической термодинамики и теории тепло- и массообмена.
СОДЕРЖАНИЕ КУРСА Техническая термодинамика рассматривает вопросы взаимного превращения тепловой и механической энергии, в том числе наиболее эффективные условия осуществления этих превращений. Кроме того, в курсе технической термодинамики изучаются свойства рабочих тел, участвующих в энергетических преобразованиях, и способы определения (расчета) термодинамических параметров состояния рабочих тел. В качестве рабочего тела в технической термодинамике выступает вещество в газообразном и парообразном состоянии. Следует разобраться в понятиях – идеальный газ и реальный газ. Основные параметры состояния рабочего тела (абсолютное удельное давление (р), удельный объем (V) и абсолютная температура (Т) связаны уравнением состояния. Уравнением состояния идеального газа является уравнение Клапейрона, которое может быть записано для 1 кг вещества или для произвольного его количества. Уравнение состояния идеального газа для киломоля вещества предложено Менделеевым. Примером уравнения состояния реального газа является уравнение Ван-дер-Ваальса.
Уравнение состояния рабочего тела, кроме основных его параметров, включает также газовую постоянную. Различают газовую постоянную 1 кг вещества (R) и газовую постоянную киломоля вещества – универсальную газовую постоянную (mR). Необходимо знать физический смысл R и mR, а также связь между ними. Основные положения технической термодинамики рассматриваются на примере идеального газа. Поскольку в тепловых машинах и аппаратах весьма часто в качестве рабочего тела выступают смеси газов (например, газообразные топливно-воздушные смеси, продукты сгорания топлива и др.), курс знакомит с методами расчета газовых смесей. Приступая к изучению термодинамических процессов, следует иметь в виду, что классическая термодинамика рассматривает их как равновесные и обратимые. При анализе термодинамических процессов (изохорного, изобарного, изотермического, адиабатного и обобщенного политропного процессов) прежде всего выясняют закономерности изменения основных параметров состояния рабочего тела (р, V и Т), а также количество тепла (q), подведенное к рабочему телу (или отведенное от него) в ходе процесса, работу (l) расширения (или сжатия) рабочего тела, изменение внутренней энергии рабочего тела (DU=U2 – U1) в процессе, изменение энтальпии (Dh = h2 – h1) и изменение энтропии (DS = S2- S1) в ходе процесса. Для определения количества тепла, участвующего в процессе, важно правильно использовать теплоемкость рабочего тела. Вещества, находящиеся в газообразном состоянии, характеризуются массовой (с), объемной (с¢) и мольной (mс) теплоемкостями. Необходимо понять зависимость теплоемкости рабочего тела от физической природы вещества, от температуры и от характера термодинамического процесса, в котором рабочее тело участвует. Необходимо научиться пользоваться таблицами теплоемкостей газов, а также владеть приемом выбора теплоемкости как величины, независимой от температуры. Следует освоить формулы для расчета теплоемкости рабочего тела в политропном процессе и формулы определения теплоемкостей газовых смесей.
В курсе дан вывод формулы для определения работы, выполняемой рабочим телом при расширении или затрачиваемой на его сжатие. Следует обратить внимание, что при изображении термодинамического процесса в координатах p-V площадь между линией процесса и осью абсцисс дает графическое изображение работы 1 кг рабочего тела в этом процессе – работы расширения (если V2 > V1) и работы сжатия (если V2 < V1). При изображении термодинамического процесса в координатах T-S площадь между линией процесса и осью абсцисс дает графическое изображение тепла, участвующего в этом процессе, в расчете на 1 кг рабочего тела – тепла, подводимого к рабочему телу (если S2 > S1), или тепла, отводимого от рабочего тела (если S2 < S1). При изучении курса необходимо понять физический смысл энтальпии и энтропии, которые также как P, V, Т и U являются параметрами состояния рабочего тела, и освоить их использование в расчетах термодинамических процессов. Введение этих параметрических величин в курс дало возможность применить для анализа термодинамических процессов диаграмму h-S, которая нашла широкое признание в инженерной практике (прежде всего для расчета процессов изменения состояния водяного пара). Курс технической термодинамики базируется на двух принципиальных положениях – первом и втором законах термодинамики. Первый закон термодинамики отражает закон сохранения и превращения энергии применительно к термодинамическому процессу. Он устанавливает эквивалентность при взаимных превращениях механической и тепловой энергии и количественное соотношение при переходе одного вида энергии в другой. Согласно первому закону термодинамики, нельзя построить «вечный двигатель 1-го рода», т.е. тепловую машину, которая бы совершала работу, не расходуя на это никакой энергии.
Необходимо освоить и другие формулировки первого закона термодинамики, которые сложились в период формирования изучаемой дисциплины. Уравнение первого закона термодинамики является энергетическим балансом рабочего тела, участвующего в термодинамическом процессе. Оно может быть записано (как для 1 кг вещества, так и для произвольного его количества) в форме, где связаны между собой количество тепла, участвующее в процессе, работа, совершаемая рабочим телом против внешних сил, и изменение внутренней энергии в процессе, а также в форме, где связаны между собой количество тепла, изменение энтальпии и располагаемая работа. Второй закон термодинамики определяет направление, в котором протекают термодинамические процессы, устанавливает условия преобразования тепловой энергии в механическую, а также определяет максимальное значение работы, которая может быть произведена тепловым двигателем. Согласно второму закону термодинамики нельзя создать «вечный двигатель 2-го рода», т.е. тепловую машину, которая бы в течении длительного времени совершала непрерывную работу при условии перехода в «получаемую» механическую энергию всего количества тепловой энергии, подводимой для этой цели к рабочему телу. Необходимо освоить и другие трактовки второго закона термодинамики, которые сложились в период формирования изучаемой дисциплины. Следует также знать аналитическое выражение второго закона термодинамики. Специальный раздел курса посвящен водяному пару. Изучение его свойств и связанных с ним расчетов тем более важно, что водяной пар используется как рабочее тело в теплосиловых установках, а также как теплоноситель в промышленной теплотехнике. Следует внимательно рассмотреть процесс парообразования в координатах р-V и понять основные состояния водяного пара – состояния влажного насыщенного пара, сухого насыщенного пара и перегретого пара. Нужно освоить понятие степени сухости пара (х). Для того, чтобы иметь возможность определять параметры состояния водяного пара, очень важно научиться пользоваться таблицами водяного пара – таблицами насыщенного пара и таблицами перегретого пара, которые обычно приводятся в учебных пособиях по технической термодинамике.
Термодинамические процессы водяного пара, в т.ч. и связанные с изменением его агрегатного состояния, изучаются в диаграммах р-V и Т-S. Необходимо понять характер расположения на диаграммах, построенных для водяного пара, пограничных кривых Х=0 и Х=1, соответственно характеризующих состояние кипящей воды и сухого насыщенного пара, а также расположение точки критического состояния водяного пара, выше которой (в указанных диаграммах) существование вещества в двухфазном состоянии невозможно. Практические задачи, связанные с расчетом водяного пара, наглядно решаются в диаграмме h-S, на которой нанесена сетка изобар, изотерм, изохор и линий х=const, включая Х=1. Следует иметь в виду, что для воды и водяного пара начало расчета h и S принято от состояния вещества в тройной точке, а внутреннюю энергию определяют по формуле U=h-pV. Диаграмма h-S водяного пара широко используется в инженерной практике, поэтому освоение ее при изучении курса нужно считать обязательным. В теплотехнике многие расчеты связаны с влажным воздухом, который представляет собой механическую смесь сухого воздуха и водяного пара. В начале изучения свойств влажного воздуха полезно рассмотреть возможные состояния водяного пара в воздухе в координатах р-V. Необходимо понять, почему влажный воздух, несмотря на присутствие в нем водяного пара, рассчитывается как идеальный газ. Следует разобраться в понятиях влагосодержание воздуха (d), абсолютная влажность воздуха и относительная влажность воздуха (j). Важно понять, почему абсолютная влажность воздуха выражается плотностью водяного пара, содержащегося в нем. Основные процессы изменения состояния влажного воздуха, встречающиеся на практике, связаны с подводом или отводом тепла при р=const, а также с повышением или понижением его влагосодержания. Расчеты процессов изменения состояния влажного воздуха обычно осуществляют, пользуясь диаграммой H-d. По диаграмме H-d для любого состояния влажного воздуха легко определить основные параметры, а также парциальное давление водяного пара и значение температуры, при которой начинается конденсация из воздуха излишней влаги (точку росы). Диаграмма H-d влажного воздуха широко используется в инженерной практике, поэтому освоение ее при изучении курса следует считать обязательным. В разделе курса, связанным с термодинамическими преобразованиями в потоке газообразного рабочего тела, рассматриваются вопросы истечения газов и паров из сопловых устройств, а также вопросы дросселирования.
При изучении процесса истечения газа (пара) следует разобрать обоснование и методику определения скорости истечения, расхода газа (пара) через сопло и размера расчетного сечения соплового устройства. Следует понять характер истечения газа (пара) из простых (цилиндрических или сужающихся) насадок, а также из комбинированного соплового устройства (сопла Лаваля). Необходимо понять условия, при которых скорость истечения газа (пара) из сопла и его расход ограничиваются пределом, равным скорости распределения звука в данной среде. При рассмотрении процесса дросселирования (мятия) газообразного рабочего тела следует усвоить, почему итоговым результатом этого процесса можно считать условие h-const. Полезно обратить внимание на примеры явления дросселирования, встречающиеся в инженерной практике. Необходимо уметь выполнять расчеты истечения и дросселирования водяного пара с помощью диаграммы h-S. В курсе технической термодинамики подробно рассматривается процесс сжатия газообразного рабочего тела в поршневом компрессоре. При этом анализируется возможность и целесообразность сжатия идеального газа по изотерме, по адиабате и политропный процесс сжатия. Необходимо разобрать процессы, связанные с работой компрессора, в индикаторной диаграмме (диаграмме в координатах р-V) и понять причины, вызывающие необходимость создания многоступенчатых компрессоров. Необходимо освоить методику определения мощности привода компрессора. Следует познакомиться с особенностями работы центробежного и осевого компрессоров. Курс технической термодинамики показывает, что непрерывная работа тепловых машин должна осуществляться на основе циклов, или круговых процессов, при осуществлении которых параметры рабочего тела изменяются от максимального значения до минимального, возвращаясь в каждом цикле к первоначальному значению. Циклы включают процессы расширения и сжатия рабочего тела, процессы с подводом тепла и процессы с отводом тепла. Процессы, из которых складываются циклы, в теоретическом курсе рассматриваются как равновесные и обратимые. Циклы, в которых работа расширения по абсолютному значению больше работы, затрачиваемой на сжатие, являются циклами тепловых двигателей (прямые циклы). Циклы, в которых работа сжатия по абсолютной величине больше, чем работа расширения, являются циклами холодильных машин или тепловых насосов (обратные циклы). Необходимо освоить графическое изображение прямых и обратных циклов в координатах р-V и Т-S; понимать значение площадей, получающихся при построении циклов в этих координатах. Необходимо разобрать принципиальные схемы тепловых машин. Следует разобрать прямой и обратный циклы Карно, циклы двигателей внутреннего сгорания (ДВС) с подводом тепла при р=const, с подводом тепла при V=const и при комбинированном способе подвода тепла, циклы газотурбинных установок (ГТУ) при разных условиях подвода тепла, цикл холодильной установки и теплового насоса. Следует понять значение и способ определения термического КПД цикла теплового двигателя (ht). Необходимо знать формулу для определения ht цикла Карно. Следует детально разобрать теоретический цикл паросиловой установки – цикл Ренкина, в т.ч. графическое изображение его в координатах р-V и T-S, а также изображение теоретического процесса расширения водяного пара в паровой турбине в диаграмме h-S. Необходимо разобрать вывод формул для определения термического КПД цикла паросиловой установки и удельных расходов пара и тепла для выработки единицы энергии при осуществлении энергетического цикла. Следует рассмотреть основные способы повышения тепловой эффективности цикла Ренкина. Существенное значение при освоении этого материала имеет рассмотрение принципиальных схем и тепловых балансов конденсационной теплоэлектростанции (ТЭС) и теплоэлектроцентрали (ТЭЦ). Необходимо также понять основные принципы теплофикации. При разборе цикла холодильной установки следует освоить понятие холодильного коэффициента. При разборе цикла теплового насоса следует освоить понятие отопительного коэффициента. Литература:[1], [2], [3], [6], [7].
КОНТРОЛЬНЫЕ РАБОТЫ При изучении курса «Техническая термодинамика» студент должен выполнить две контрольные работы и ответить письменно на четыре теоретических вопроса. Условия задач и номера теоретических вопросов выбираются в соответствии с двумя последними цифрами учебного шифра студента. Первая контрольная работа состоит из шести задач, содержание которых отражает материал важнейших разделов курса; вторая контрольная работа посвящена расчету термодинамических процессов водяного пара. Предложенные задачи рекомендуется решать по мере проработки соответствующих разделов курса. При решении задач для всех исходных и итоговых величин, кроме относительных (безразмерных) величин, должны быть указаны единицы измерения. Для проверки усвоенного материала после решения задач необходимо письменно ответить на все поставленные вопросы. Контрольные работы должны быть аккуратно оформлены в отдельной тетради, на обложке которой следует указать фамилию и инициалы студента, а также его учебный шифр; на каждой странице тетради необходимо оставить поля для пометок преподавателя. Прием контрольных работ производится преподавателем, ведущим данную дисциплину, после собеседования со студентом по основным вопросам курса, связанным с выполнением решенных задач.
ЗАДАНИЕ НА КОНТРОЛЬНУЮ РАБОТУ №1
Ответить письменно на вопросы, указанные в таблице 1.
Таблица 1
Вопросы 1. Какие условия необходимо соблюдать, чтобы термодинамический процесс был обратимым? Что является причиной необратимости реальных термодинамических процессов? 2. Почему внутреннюю энергию, энтальпию и энтропию рабочего тела называют параметрами или функциями состояния, а теплоту и работу функциями процесса? 3. В чем сущность 1-го закона термодинамики? Напишите уравнение первого закона термодинамики, объясните входящие в него величины. 4. В чем сущность второго закона термодинамики? 5. Приведите основные формулировки второго закона термодинамики и дайте его аналитическое выражение для обратимых и необратимых процессов. Покажите, что цикл Карно является наивыгоднейшим в заданном интервале температуры. 6. Покажите, что изохорный, изобарный, изотермический и адиабатный процессы являются частными случаями политропного процесса. 7. Пользуясь уравнениями первого закона термодинамики для потока и для закрытой системы, покажите за счет чего совершаются все виды работы рабочего тела в потоке. 8. Для чего применяется сопло Лаваля? Изобразите схематически это сопло. Как меняются давление и скорость газа вдоль сопла? 9. Изобразите тепловой процесс в сопле Лаваля в hS – диаграмме. Приведите уравнение для определения теоретической и действительной скоростей истечения. 10. Почему в сходящемся канале нельзя достичь скорости большей, чем местная скорость звука? 11. Приведите определение удельной массовой, объемной и мольной теплоемкостей. Истинная и средняя теплоемкости. Напишите уравнение количества теплоты через среднюю теплоемкость 12. Приведите уравнение работы в произвольном процессе и покажите, что работа является функцией процесса. 13. Приведите определение идеального и реального газа. Основные законы идеальных газов. 14. Приведите определение удельной газовой постоянной и универсальной газовой постоянной, в каких единицах они выражаются и физический смысл газовой постоянной. 15. Что такое теплоемкость при постоянном давлении и теплоемкость при постоянном объеме? Почему теплоемкость газа при постоянном давлении больше теплоемкости при постоянном объеме? 16. Изобразите в диаграммах РV и TS процесс парообразования для водяного пара и объясните характерные области, линии и точки, нанесенные на них. 17. Какие величины связывает между собой уравнение Клапейрона – Клаузиуса? 18. Чем характерны критическая и тройная точки? Каковы значения их параметров для воды? 19. Какой пар называется сухим насыщенным? Изобразите на диаграммах РV, TS и hS обратимый адиабатный процесс расширения перегретого пара до состояния сухого насыщенного пара. Дайте необходимые пояснения. 20. Изобразите на диаграммах РV, TS и hS изобарный процесс нагревания влажного насыщенного водяного пара до состояния перегретого пара. Дайте необходимые пояснения. 21. Как изменяется теплота парообразования с увеличением давления? Как посчитать теплоту парообразования? 22. Изобразите теоретическую индикаторную диаграмму поршневого компрессора для случая изотермического и адиабатного сжатия. Покажите на ней площади, которыми изображаются работы наполнения, сжатия и выталкивания. Для чего применяется охлаждение компрессора? 23. Изобразите идеальный цикл двигателя внутреннего сгорания с изобарным подводом тепла в РV и TS диаграммах. Отчего зависит к.п.д. этого цикла? 24. Изобразите идеальный цикл двигателя внутреннего сгорания со смешанным подводом тепла в РV и TS диаграммах. Отчего зависит к.п.д. этого цикла? 25. Приведите принципиальную схему паросиловой установки, работающей по циклу Ренкина, изобразите этот цикл в координатах РV, TS и hS. 26. Как влияют начальные и конечные параметры на термический КПД цикла Ренкина? 27. Что такое промежуточный перегрев пара и для чего он применяется? Приведите принципиальную схему этой установки. Дайте необходимые пояснения? 28. Изобразите идеальный цикл двигателя внутреннего сгорания с изохорным подводом тепла в РV и TS диаграммах. Отчего зависит к.п.д. этого цикла. 29. Что называется теплофикацией? В чем ее преимущества перед раздельной выработкой тепловой и электрической энергии? Каким параметром оценивают экономичность теплоэлектроцентрали? 30. Приведите принципиальную схему регенеративного цикла паротурбинной установки. Дайте необходимые пояснения. 31. Изобразите схему двухконтурной атомной теплоэнергетической установки и объясните принцип ее действия. В чем принципиальные отличия этой установки от обычных паросиловых установок? 32. Принцип работы теплового насоса. 33. Первый закон термодинамики для потока. 34. Цикл газотурбинной установки с подводом теплоты при постоянном объеме. 35. Цикл газотурбинной установки с подводом теплоты при постоянном давлении. 36. Сравнение циклов газотурбинных установок. 37. Сравнение циклов двигателей внутреннего сгорания. 38. Бинарный парогазовый цикл теплоэнергетической установки. 39. Воздушная компрессионная холодильная установка. 40. Абсорбционная холодильная установка.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|