Основные понятия и технологические процессы порошковой металлургии
Технологические процессы порошковой металлургии включают следующие операции. 1. Приготовление шихты и дозировка. Сначала порошки очищают химическим, гидромеханическим или магнитными способами, затем измельчают в шаровых мельницах. Шихту разделяют на фракции путём просеивания через набор сит, а при величине зерна менее 50 мкм применяют воздушную сортировку. Подготовленные порошки смешивают и дозируют по массе или объёму. 2. Формование в стальных пресс-формах применяют для мелких деталей. Для изготовления крупных изделий из тугоплавких металлов (труб, стержней) применяют гидростатическое прессование. Для получения листов, полос и лент применяют прокатку. На обычных же прессах возможно прессование только простых по форме деталей. Специальные прессы применяются для изготовления сложных изделий; они имеют до 4-6 независимых рабочих перемещений. 3. Механическая доработка применяется для небольшого круга материалов, имеющих сравнительно высокую прочность после формования. Механическая доработка позволяет получить на изделии сложные фасонные элементы, невозможные для прессования (резьба). 4. Спекание обеспечивает сцепление частиц порошка вследствие диффузии атомов. При правильном выполнении этого процесса частицы порошка «спаиваются» (слипаются) настолько прочно, что как бы перестают существовать самостоятельно. Спекание производят при температуре примерно равной (0,65-0,79) t пл основного компонента сплава в водородных или вакуумных печах для защиты от окисления. 5. Горячее прессование заключается в одновременном прессовании и спекании, что сокращает время операции в 20-30 раз. Оно выполняется при меньшей температуре. Но недостатком этого процесса является низкая стойкость дорогих пресс-форм. Например, графитовые пресс-формы выдерживают 3-5 прессовок при температуре 1500°С.
6. Калибрование. При обычном процессе порошковой металлургии можно получить детали сравнительно невысокой точности 10-12 кв и шероховатостью RZ=20-10 мкм. Для повышения точности таких деталей выполняют калибрование в специальных пресс-формах (точных!) при удельном давлении до 100кПа и при условии достаточной пластичности материала. При этом точность размеров повышается до 8-9кв (нормально) и RA 2,5-6,3мкм. Каждая из указанных операций вносит свой важный вклад в формирование всех свойств конечных порошковых изделий. Возможные отклонения от приведенной типовой технологической схемы могут выражаться в совмещении операций формования и спекания при горячем прессовании, в спекании свободно насыпанного порошка (при отсутствии формования заготовки из порошка), в отсутствие какой-либо обработки после спекания и др. Порошки, используемые в порошковой металлургии, состоят из частиц размером 0,01-500 мкм. Получают порошки металлов (или их соединений) механическим и физико-химическим методами. К основным механическим методам получения порошков относятся: 1. Дробление и размол твердых материалов. Измельчение стружки, обрезков и компактных материалов проводят в шаровых, вихревых, молотковых и других мельницах, к.п.д. которых сравнительно невелик. Получают порошки Fe, Cu, Mn, латуни, бронзы, хрома, алюминия, сталей. 2. Диспергирование расплава. Струю расплавленного металла диспергируют механическим способом (воздействием центробежных сил и др.) или действуя на нее потоком энергоносителя (газа или жидкости). Получают порошки алюминия, свинца, цинка, бронзы, латуни, железа, чугуна, стали. 3. Грануляция расплава. Порошок образуется при сливании расплавленного металла в жидкость (например, в воду). Получают крупные порошки железа, меди, свинца, олова, цинка.
4. Обработка твердых (компактных) металлов резанием. При станочной обработке литых металлов или сплавов подбирают такой режим резания, который обеспечивает образование частиц, а не стружки. Получают порошки стали, латуни, бронзы, магния. Твердые тела измельчают в мельницах с мелющими телами (барабанные вращающиеся, вибрационные, планетарные мельницы), ударного действия (вихревые, струйные, центробежные) и с вращающимися частями (аттриторы, дисковые, кавитационные, молотковые, роторные). При измельчении в мельницах хрупких материалов частицы порошка имеют осколочную форму, при измельчении пластичных материалов - чешуйчатую. Измельченные порошки характеризуются наклепом (изменением структуры и свойств, вызванным пластической деформацией) и, как правило, подвергаются отжигу. Другим распространенным методом получения порошков является диспергирование расплавов. Диспергирование расплавленного металла или сплава струей сжатого газа, жидкости или механическим способом позволяет получать порошки, называемые распыленными. Процесс характеризуется высокими производительностью, технологичностью, степенью автоматизации и сравнительно малыми энергозатратами, экологически чистый. Промышленное производство порошков в нашей стране составляет в соотношении 4-5: 1 в пользу распыленных порошков. В настоящее время метод распыления широко используют для получения не только порошков железа, сталей и других сплавов на основе железа, но и порошков алюминия, меди, свинца, цинка, тугоплавких металлов (титана, вольфрама и др.), а также сплавов на основе этих цветных металлов. Распыление весьма эффективно при получении порошков многокомпонентных сплавов и обеспечивает объемную равномерность химического состава, оптимальное строение и тонкую структуру каждой образующейся частицы. Это связано с перегревом расплава перед диспергированием, что приводит к высокой степени его однородности на атомарном уровне из-за полного разрушения наследственной структуры твердого состояния и интенсивного перемешивания, и кристаллизацией дисперсных частиц с высокими скоростями охлаждения - от 103 - 104 до нескольких десятков и даже сотен миллионов градусов в секунду.
Методы распыления металлического расплава различаются по виду затрачиваемой энергии (нагрев индукционный или косвенный, электродуговой, электронный, лазерный, плазменный и др.), виду силового воздействия на расплав при диспергировании (механическое воздействие, энергия газовых и водяных потоков, силы гравитационные, центробежные, воздействия ультразвука и т.д.) и по типу среды для его создания и диспергирования (восстановительная, окислительная, инертная или какая-либо иная среда заданного состава, вакуум). Сущность получения металлических порошков из расплава заключается в нарушении сплошности его потока (струи или пленки) под действием различных источников возмущений с возникновением дисперсных частиц. Центробежное распыление представляет собой один из основных видов диспергирования расплава. По методу вращающегося электрода распыление происходит в момент формирования расплава. Образовавшаяся на торце расходуемого электрода, вращающегося со скоростью 2000-20000 об/мин, пленка расплава толщиной 10-30 мкм под действием центробежных сил перемещается к его периферии и срывается с его кромки в виде частиц-капель преимущественно размером 100-200 мкм (увеличение диаметра расходуемого электрода и скорости его вращения приводит к уменьшению размера частиц-капель) Кристаллизация капель со скоростью охлаждения порядка 104°С/сек происходит в атмосфере инертного газа. При других схемах диспергирования плавление металла проводят автономно, вне зоны распыления. Когда струю расплава подают на вращающийся со скоростью до 24000 об/мин диск, на его вогнутой поверхности образуется пленка жидкого металла, от которой затем отрываются капли-частицы преимущественно размером <100 мкм и кристаллизуются в атмосфере инертного газа со скоростью 105 - 106 °С/сек. В последнее время активно развиваются методы распыления расплавов, обеспечивающие очень высокие скорости охлаждения частиц. Один из вариантов, обеспечивающий затвердевание жидкой капли со скоростью 107 - 108 °С/с, позволяет получать так называемые РИБЗ - (распыленные и быстрозакаленные порошки), когда на пути летящей капли устанавливают охлаждаемый экран под углом 15-45° к направлению ее движения; при ударе об экран капля перемещается по его поверхности и последовательно кристаллизуется в виде частицы пластинчатой формы.
На установке для сверхбыстрого охлаждения в вакууме или инертном газе капли расплава выдуваются аргоном из отверстия в графитовом тигле, находящемся в трубчатой индукционной печи, и попадают на медный крылообразный кристаллизатор, вращающийся со скоростью до 104 об/мин (встречная скорость движения капли и кристаллизатора до 500 м/с). Высокоскоростное затвердевание расплава обеспечивает извлечение малых объемов металла кромкой быстровращающегося (2000-5000 об/мин) в вертикальной плоскости диска из высокотеплопроводного материала. При контакте с расплавом на кромке диска затвердевает некоторый слой металла, затем он выходит из расплава и охлаждается, после чего частица отделяется от кромки диска (скорость охлаждения 106-108 °С/с). В любом случае методы распыления при кристаллизации капли расплава со скоростью более 106 °С/с приводят к получению порошков, частицы которых имеют аморфную структуру, придающую им чрезвычайно специфические свойства, позволяющие создавать уникальные материалы для различных отраслей техники.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|