Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Классификация коррозийных процессов.

Введение. Определение термина «коррозия металлов»

 

Металлы и их сплавы являются наиболее важными современными конструкционными материалами. Всюду, где эксплуатируются металлические конструкции, есть вещества, которые, взаимодействуя с металлами, постепенно их разрушают: ржавление металлических конструкций (железных кровель зданий, стальных мостов, станков и оборудования цехов) в атмосфере; ржавление наружной металлической обшивки судов в речной и морской воде; разрушение металлических баков и аппаратов растворами кислот, солей и щелочей на химических и других заводах; ржавление стальных трубопроводов в земле; окисление металлов при их нагревании и т. п. У большинства металлов в условиях их эксплуатации более устойчивым является окисленное (ионное) состояние, в которое они переходят в результате коррозии. Слово «коррозия» происходит от латинского «corrodere», что означает «разъедать».

Коррозией металлов называют самопроизвольное разрушение металлических материалов вследствие химического или электрохимического взаимодействия их с окружающей средой. Под металлами подразумеваются простые металлы и их сплавы, а также металлические изделия и конструкции. Средой, в которой происходит коррозия металлов, обычно бывают различные жидкости и газы.

Коррозия является самопроизвольным процессом разрешения металлов в отличие от не называемого коррозией преднамеренного разрушения металлов при их растворении в кислотах (с целью получения солей), в гальванических элементах (с целью получения постоянного электрического тока), при анодном растворении в электолизерах (с щелью последующего катодного осаждения металла из раствора) и т.п. Причиной коррозии металлов – химическое или электрохимическое взаимодействие с окружающей средой – отграничивает коррозионные процессы от процессов радиоактивного распада металлов и от эрозии – механического разрушения металлов (при шлифовке металлов или износе трущихся деталей машин).

Коррозийный процесс протекает на границе двух фаз металл – окружающая среда, т.е. является гетерогенным процессом взаимодействия жидкой или газообразной среды (или их окислительных компонентов) с металлом.

Коррозия металлов имеет место в большей или меньшей степени всюду, где обрабатываются металлы или эксплуатируются металлические изделия и конструкции.

   

                    

 

 

Классификация коррозийных процессов.

1. По механизму процесса различают химическую и электрохимическую коррозию металлов:

1) химическая коррозия – взаимодействие металла с коррозионной средой, при котором окисление металла и восстановление окислительного компонента коррозионной среды протекают в одном акте (например, окисление магния при нагревании на воздухе).

2) Электрохимическая коррозия – взаимодействие металла с коррозионной средой (раствором электролита), при котором ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от электродного потенциала металла (например, ржавление стали в морской воде).

2. По условиям протекания коррозии, которые весьма разнообразны, различают несколько видов коррозии:

1) газовую коррозию – коррозию металлов в газах при высоких температурах (например, окисление и обезуглероживание стали при нагревании);

2) атмосферную коррозию – коррозию металлов в атмосфере воздуха, а также любого влажного газа (например, ржавление стальных конструкций в цехе или на открытом воздухе);

3) жидкостную коррозию - коррозию металлов в жидкой среде: в неэлектролите (бром, расплавленная среда, органический растворитель, жидкое топливо) и в электролите (кислотная, щелочная, солевая, морская, речная коррозия, коррозия в расплавленных солях и щелочах). В зависимости от условий взаимодействия среды с металлом различают жидкостную коррозию металла при полном, неполном и переменном погружении, коррозия по ватерлинии (вблизи границы между погруженной и непогруженной в коррозионную среду частью металла), коррозию в неперемешиваемой (спокойной) и перемешиваемой (движущейся) коррозионной среде;

4) подземную коррозию – коррозию металлов в почвах и грунтах (например, ржавление подземных стальных трубопроводов);

5) биокоррозию – коррозию металлов под влиянием жизнедеятельности микроорганизмов (например, усиление коррозии стали в грунтах сульфат-редуцирующими бактериями);

6) структурную коррозию – коррозию, связанную со структурной неоднородностью металла (например, ускорение коррозионного процесса в растворах H2SO4 или HC1 катодными включениями: карбидами в стали, графитом в чугуне, интерметаллидом CuAl2 в дюралюминии);

7) коррозию внешним током – электрохимическую коррозию металлов под воздействием тока от внешнего источника (например, растворение стального анодного заземления станции катодной защиты подземного трубопровода);

8) коррозию блуждающим током – электрохимическую коррозию металла (например, подземного трубопровода) под воздействием блуждающего тока;

9) контактную коррозию – электрохимическую коррозию, вызванную контактом металлов, имеющих разные стационарные потенциалы в данном электролите (например, коррозия в морской воде деталей из алюминиевых сплавов, находящихся в контакте с медными деталями);

10) щелевую коррозию – усиление коррозии в щелях и зазорах между металлами (например, в резьбовых и фланцевых соединениях стальных конструкций, находящийся в воде), а также в местах неплотного контакта металла с неметаллическим коррозионноинертным материалом;

11) коррозию под напряжением – коррозию металлов при одновременном воздействии коррозионной сарды и механических напряжений. В зависимости от характера нагрузок может быть коррозия при постоянной нагрузке (например, коррозия металла паровых котлов) и коррозия при переменной нагрузке (например, коррозия осей и штоков насосов, рессор, стальных канатов); одновременное воздействие коррозионной среды и знакопеременных или циклических растягивающих нагрузок часто вызывает коррозийную усталость – понижение предела усталости металла;

12) коррозионную кавитацию – разрушение металла, вызванное одновременным коррозионным и ударным воздействием внешней среды (например, разрушение лопастей гребных винтов морских судов);

13) коррозию при трении (коррозионная эрозия) – разрушение металла, вызываемое одновременным воздействием коррозионной среды и трения (например, разрушение шейки вала при трении о подшипник омываемый морской водой);

14) фреттинг-коррозию – коррозию металлов при колебательном перемещении двух поверхностей относительно друг друга в условиях воздействия коррозионной среды (например, разрушение двух поверхностей металлических деталей машины, плотно соединенных болтами, в результате вибрации в окислительной атмосфере, содержащей кислород).

3. По характеру коррозионного разрушения различают следующие виды коррозии:

1) сплошную, или общую коррозию (1а – 1в), охватывающую всю поверхность металла, находящуюся под воздействием данной коррозионной среды. Сплошная коррозия бывает:

а) равномерной (1а), которая протекает с одинаковой скоростью по всей поверхности металла (например, коррозия углеродистой стали в растворах H2SO4);

б) неравномерной (рис. 1б), которая протекает с одинаковой скоростью по всей поверхности металла (например, коррозия углеродистой стали в морской воде);

в) избирательной (рис. 1в), при которой разрушается одна структурная составляющая сплава (графитизация чугуна) или один компонент сплава (обесцинкование латуней);

2) местную коррозию (2а – 2и) охватывающую отдельные участке поверхности металла. Местная коррозия бывает:

а) пятнами (2а) – в виде отдельных пятен (например, коррозия латуни в морской воде);

б) язвами (2б) - коррозионное разрушение, имеющее вид раковины (например, коррозия стали в грунте);

в) точечной (питтинг) (2в) – в виде отдельных точечных поражений (например, коррозия аустенитной хромоникелевой стали в морской воде);

г) сквозной (2г), которая вызывает разрушение металла насквозь (например, при точечной или язвенной коррозии листового металла);

д) нитевидной (2д), распространяющейся в виде нитей преимущественно под неметаллическими защитными покрытиями (например, на углеродистой стали под пленкой лака);

е) подповерхностной (2е), начинающейся с поверхности, но преимущественно распространяющейся под поверхностью металла таким образом, что разрушение и продукты коррозии оказываются сосредоточенными в некоторых областях внутри металла; подповерхностная коррозия часто вызывает вспучивание металла и его расслоение (например, образование пузырей на поверхности недоброкачественного прокатанного листового металла при коррозии или травлении);

ж) межкристаллитной (2ж), распространяющейся по границам кристаллитов (зерен) металла (например, коррозия замедленного охлаждения или нагрева при 5000 С); этот вид коррозии особенно опасен тем, что, не изменяя часто внешнего вида металлической конструкции, ведет к быстрой потере металлом прочности и пластичности;

з) ножевой (2з) – локализованная коррозия металла, имеющая вид надреза ножом в зоне сплавления сварных соединений в сильно агрессивных средах (например, случаи коррозии сварных швов хромоникелевой стали X 18H10 c повышенным содержание углерода в репкой HNO3);

и) коррозионным растрескиванием – коррозия металла при одновременном воздействии коррозионной среды и внешних или внутренних механических напряжений растяжения с образованием транскристаллитных (2и) или межкристаллитных трещин (например, коррозия некоторых деформируемых сплавов магния с алюминием в атмосфере или воде при наличии растягивающих напряжений и так называемое сезонное растрескивание холодно деформированных альфа- и бетта-латуней, содержащих более 8-10% Zn, при коррозии в атмосфере, содержащей NH3, SO2 и др;

к) коррозионной хрупкостью, приобретенной металлом в результате коррозии (например, водородное охрупчивание труб из высокопрочных сталей в условиях сероводородных нефтяных скважин); под хрупкостью следует понимать свойство материала разрушаться без заметного поглощения механической энергии в необратимой форме.

 

 

2. Влияние внешних факторов на скорость электрохимической коррозии.

 

Из внешних факторов на скорость, вид и характер развития коррозионного процесса наиболее существенное влияние оказывают pH и температура коррозионной среды, состав и концентрация нейтральных растворов, концентрация растворенного кислорода, скорость относительного движения среды.

 

Влияние pH коррозионной среды. В каждом конкретном случае за вероятным коррозионным поведение того или иного металла в зависимости от pH среды можно проследить по соответствующей диаграмме, построенной в координатах равновесный потенциал – pH при обычной температуре (диаграммы Пурбэ). Диаграмма Пурбэ позволяет однозначно определить область коррозионной устойчивости (или иммунитета), в которой окисление металла термодинамически невозможно, а также прогнозировать область его пассивного и коррозионно-активного состояния. Диаграмма не всегда может дать однозначный ответ о коррозионном поведении металла, так как она характеризует его равновесное состояние, а коррозионный процесс является всегда неравновесным и подвержен влиянию многих кинетических факторов.

Влияние pH на скорость коррозии значительно зависит от природы металла. В зависимости от этого для обычной температуры металлы можно разделить на пять групп.

Группа I – благородные металлы и в известной степени Ti, на коррозию которых pH не оказывает влияния. В эту группу входят Pt, Au, Ag и др.

Группа II – атмосферные металлы, достаточно устойчивые в нейтральной среде, но неустойчивые в кислых и щелочных средах. К ним относятся Zn, Al, Pb, Sn.

Группа III – металлы, полностью устойчивые в кислых и нейтральных средах, но сильно корродирующие в щелочных средах. Такими металлами являются Mo, W и Та.

Группа IV – металлы, которые слабо корродируют в нейтральной и щелочной средах, но скорость их коррозии повышается в сильнокислых средах. В эту группу входят Ni, Co, Cd.

Группа V – металлы, неустойчивые в кислых средах и умеренно корродирующие в нейтральной области; в щелочной области их устойчивость повышается, достигая максимума при pH 12 – 14. к этой группе относятся Mn, Mg, Cr, Cu и Fe. Коррозия железа при pH выше 14 резка ускоряется вследствие образования растворимого HFeO2-.

 

   Влияние состава и концентрации нейтральных растворов солей. В нейтральных средах коррозия протекает преимущественно с кислородной деполяризацией. Степень влияния нейтральных растворов солей на скорость коррозии зависит от свойств образующихся продуктов коррозии. Труднорастворимые соединения экранируют поверхность металла, в результате чего скорость коррозии уменьшается.

Нитраты, хлориды, а зачастую и сульфаты образуют с металлами растворимые соединения, которые не экранируют поверхность металла, что способствует повышению скорости коррозии. Активизирующее действие растет в ряду: иодиды, бромиды, хлориды, фториды.

Влияние солей, склонных к гидролизу, таких, как хлорид алюминия и ацетат натрия, зависит от того, насколько изменился pH среды после гидролиза.

При повышении концентрации нейтральных солей до определенных значений обычно увеличивается и скорость коррозии вследствие повышения электропроводности раствора, а в случае хлоридов – также из-за активирующего влияния ионов хлора. При дальнейшем увеличении концентрации растворимость кислорода, участвующего в катодной реакции, падает и скорость коррозии уменьшается.

 

  Влияние кислорода. Скорость коррозии металлов в нейтральных растворах существенно зависит от концентрации растворенного в коррозионной среде кислорода, который обеспечивает протекание катодной реакции. В большинстве случаев кислород поступает из атмосферы, и скорость коррозии в соответствии с механизмом диффузионной кинетики электрохимического процесса прямо пропорциональна его концентрации. Линейная зависимость наблюдается до тех пор, пока не будет достигнута достаточно высокая концентрация кислорода, после чего поверхность металла начинает пассивироваться. Содержание кислорода к коррозионной среде зависит как от состава и концентрации солей, так и от температуры, условий перемешивания и других факторов, определяющих его растворимость в данной среде.

  Неравномерный перенос кислорода к поверхности металла вызывает местную коррозию, скорость которой зависит от степени неравномерности аэрации.

    

Влияние температуры. Если коррозионный процесс идет с водородной деполяризацией, то при увеличении температуры одновременно повышается и скорость коррозии. Основной причиной этого является понижение перенапряжения катодного процесса, ускорение диффузии и уменьшение электрического сопротивления среды.

Скорость коррозионных процессов, протекающих с кислородной деполяризацией, при значительном повышении температуры понижается вследствие уменьшения растворимости кислорода. Повышение температуры иногда приводит к пассивированию металла.

 

Влияние скорости относительного движения коррозионной среды. Скорость коррозии не зависит от того, что находится в движении – металл или коррозионная среда. Скорость относительного движения существенно влияет на коррозионные процессы, идущие с кислородной деполяризацией, так как благодаря движению концентрация кислорода в приэлектродном слое увеличивается. Продукты коррозии, пассивирующие поверхность металла, при движении отслаиваются, что приводит к повышению скорости коррозии. При больших скоростях относительного движения повышение концентрации кислорода может привести к пассивации поверхности металла. При очень высокой скорости наблюдается коррозионная эрозия, т. е. Комбинированное электрохимическое и эрозионное разрушение металла.

 

 

3. Влияние внутренних факторов на скорость электрохимической коррозии.

 

Внутренними факторами, оказывающими существенное влияние на скорость коррозии металла, являются его термодинамическая устойчивость и положение в периодической системе Менделеева, тип и структура сплава и механический фактор.

 

Термодинамическая устойчивость металла. Термодинамическая устойчивость металлов зависит от их равновесных потенциалов, но эта зависимость не определяет однозначно скорость их коррозии. Это объясняется различиями в протекании реального и идеального процессов коррозии.

Значительно более точную характеристику устойчивости металлов дают диаграммы Пурбэ, которые отражают термодинамическую устойчивость металла при определенных значениях pH и концентрации коррозионной среды.

Влияние кинетических факторов и загрязняющих примесей также препятствует однозначному термодинамическому прогнозированию коррозионного поведения металлов в определенной коррозионной среде.

 

Положение металла в периодической системе. Положение металла в периодической системе дает возможность сделать лишь общую оценку его коррозионного поведения, но не позволяет точно охарактеризовать коррозионный процесс.

Наиболее устойчивы к коррозии металлы левой подгруппы 1 и 2 групп периодической системы. В правой подгруппе 1 и 2 групп, как и в других группах, коррозионная устойчивость растет с возрастанием порядкового номера. В левых подгруппах 4 и 6 групп и в 8 группе расположены легко пассивирующиеся металлы, причем их склонность к пассивации убывает с увеличением порядкового номера.

 

Тип сплава. Для многофазных сплавов, представляющих собой механическую смесь, скорость коррозии зависит от массового соотношения фаз, выступающих в роли катода и анода, а также от их взаимного расположения. Если фазы распределены равномерно, а содержание компонента, служащего анодом, незначительно, то в этом случае преобладает общая коррозия, которая с течением времени замедляется. При неравномерном распределении анодной фазы наблюдается местная коррозия, при которой по прошествии длительного периода времени появляются глубокие и опасные каверны. Мелкозернистая структура эвтектической и эвтектоидной смесей более благоприятно для коррозии и приводит к повышению ее скорости.

Для однофазных сплавов типа твердых растворов скорость коррозии изменятся скачкообразно и монотонная зависимость от состава сплава не наблюдается.

Механизм пороговой устойчивости состоит в блокировании атомов корродирующего металла атомами более благородного металла при условии, что атомы защищающего металла не диффундируют, как это бывает при нагревании сплава.

 

Механический фактор. Под понятием «механический фактор» подразумевается воздействие на металл механических нагрузок – постоянных или периодических внутренних или внешних напряжений. Механический фактор увеличивает термодинамическую нестабильность металла и может привести к разрушению целостности защитных пленок на его поверхности.

Коррозия под напряжением возникает при комбинированном воздействии на металл постоянного растягивающего усилия и коррозионной среды и вызывает коррозионное растрескивание. Этому виду коррозии подвергаются высоколегированные хромистые стали и никель в растворах едкого натра. Растягивающие напряжения могут возникать в результате холодной обработки, например, при глубокой вытяжке металла, или при сворке в зоне термического влияния на расстоянии нескольких миллиметров от сворного шва.

Коррозийная усталость, возникающая при комбинированном воздействии коррозионной среды и периодического или знакопеременного механического воздействия, резко ухудшает механические характеристики металла.
устойчивость металлов против коррозии под напряжением и коррозионная усталость зависят от ряда технологических и конструктивных факторов, таких, как температура, перемешивание коррозионной среды, аэрация и конструкционные особенности деталей и узлов.

 

4. Влияние внешних и внутренних факторов на химическую коррозию.

 

 

Скорость и характер процесса химической коррозии металлов зависят от многих факторов. Внешними называют факторы, связанные с составом коррозионной среды и условиями коррозии (температура, давление, скорость движения среды и др.). внутренними называют факторы, связанные с составом и структурой сплава, внутренними напряжениями в металле, характером обработки поверхности и др.

1. Температура. Температура очень сильно влияет на скорость процессов химической коррозии металлов. С повышением температуры процессы окисления металлов протекают значительно быстрее, несмотря на уменьшение их термодинамической возможности. Колебания температуры, особенно попеременные нагрев и охлаждение, увеличивают скорость окисления металлов, например, железа и сталей, так как в защитной окисной пленке вследствие возникновения в ней термических напряжений образуются трещины и она может отслаиваться от металла.

2. Состав газовой среды. Влияние состава газовой среды на скорость коррозии металлов велико, специфично для разных металлов и изменяется с температурой. Состав газовой среды оказывает большое влияние на скорость окисления железа и стали. Особенно сильно влияют кислород, соединения серы и водяные пары. Насыщение воздуха парами воды увеличивает скорость коррозии стали в два-три раза. При наличии в газовой среде соединений серы железо и сталь часто подвергаются межкристаллитной коррозии, особенно при температурах выше 10000С. Если газовой средой являются продукты горения топлива, то газовая коррозия углеродистых и низколегированных сталей тем сильнее, чем выше коэффициент расхода воздуха, с которым сжигается топливо. Присутствие в газовой среде SO2 значительно увеличивает коррозию углеродистых сталей. Значительное влияние на коррозию сталей и сплавов оказывают продукты горения топлива, содержащие ванадий.

3. Давление газов. При снижении парциального давления окисляющего компонента ниже давления диссоциации образующегося соединения металл становится термодинамически устойчивым и его окисление прекращается. Если скорость окисления металла определяется скоростью поверхностной реакции, то скорость окисления пропорциональна корню квадратному из величины давления газа. Такая закономерность наблюдается, если газ воздействует обнаженную поверхность металла, т. е. В отсутствии защитной пленки. Если скорость общей реакции взаимодействия металла с газовой фазой определяется скоростью процесса диффузии в слое образующего продукта коррозии, то зависимость скорости окисления от давления окисляющего газа может быть совершенно иной и разной для разных поверхностных соединений. Скорость диффузии реагентов в защитных пленках зависит от концентрации в них дефектов. Влияние давления окислительного газа на концентрацию дефектов также сказывается на скорости диффузии реагентов.

4. Высокотемпературная пассивация. По Вагнеру, металл или сплав можно назвать пассивным, когда количество, по крайней мере, одного компонента, расходуемое в химической или электрохимической реакции за одно и то же время, значительно меньше при его более сильном сродстве к кислороду, чем при более слабом.

5. Скорость движения газовой среды. Опытные данные а влиянии скорость движения газовой среды на скорость окисления металлов, согласно которым уже при небольших скоростях газового потока достигаются предельные значения скорости окисления металлов при данной температуре, указывают на то, что окисление металлов, дающих при окислении полупроводниковые окислы р -типа, контролируется не только диффузией реагентов через окалину, но и переносом окислителя к поверхности раздела окалина – газ, т. е. Внешней массопередачей. Таким образом, увеличение скорости движения газовой среды в какой-то степени эквивалентно повышению парциального давления окислителя.

6. Режим нагрева. Колебания температуры при нагреве или эксплуатации металлов при высоких температурах, особенно переменные нагрев и охлаждение, увеличивают скорость окисления металлов, например, железа и сталей, так как в защитной окисной пленке вследствие возникновения в ней термических напряжений образуются трещины и она может отслаиваться от металла, т. е. Нарушается сохранность защитной пленки в связи с низкой ее термостойкостью. В ряде случаев термостойкость может быть повышена за счет внутреннего окисления сплава, способствующего врастанию образующейся окалины в металл.

7. Состав сплава. Защитные свойства образующейся пленки продуктов коррозии и, следовательно, коррозионная стойкость сплава находятся в зависимости о его состава. Применительно к наиболее важному и распространенному материалу – сплавам на железной основе и наиболее распространенному процессу химической коррозии металлов – газовой коррозии – можно отметить следующее. При высоких температурах (8000С и выше) с увеличением содержания углерода, а также видимое и истинное обезуглероживание уменьшаются вследствие более интенсивного образования окиси углерода, что приводит к торможению окисления железа, самоторможению окисления углерода и усилению образования в окалине газовых пузырей. 

8. Структура металла. Характер изменения структурной зависимости скорости окисления железа в области аллотропического превращения указывает на то, что при высоких температурах более жаростойкой является аустенитная структура, при которой наблюдается более медленный рост скорости окисления с увеличением температуры. Меньшая жаростойкость двухфазных сталей связана с большей неоднородностью образующейся защитной окисной пленки по составу и распределению в ней внутренних напряжений, возникающих в процессе ее роста, что приводит большой неоднородности защитных свойств и частичному саморазрушению этой пленки.

9. Деформация металла. Предварительная деформация может влиять на окисление стали при температурах, не превосходящих температуру возврата или рекристаллизации. Установлено, что предварительная деформация металла несколько ускоряет окисление в его начальной стадии вследствие повышенной энергии металла и влияния на структуру образующейся первичной окисной пленки, а растягивающие напряжения увеличивают возможность протекания местной, в частности межкристаллитной, коррозии.

10.  Характер обработки поверхности металла. чем тщательнее обработана поверхность стали, тем меньше скорость ее окисления. Это обусловлено не только различием истинных начальных поверхностей окисляющегося металла, но и худшей сохранностью защитных пленок на неровных поверхностях, а также увеличением микрогетерогенности окисной плени на этих поверхностях, что ухудшает ее защитные свойства.        

 

    

    

 

5. Общие методы защиты от коррозии.

 

 

5.1. Покрытия.

 

Виды покрытий оптических деталей: покрытия могут быть однослойными и многослойными. Отражающие непрозрачные покрытия: внешние, задние; светоделительные покрытия, просветляющие покрытия, покрытия-фильтры, защитные прозрачные покрытия, токопроводящие покрытия (обогревающие и др.).

Покрытия деталей оптико-механических приборов. Назначение покрытий. В зависимости от назначения применяются следующие виды покрытий: защитные для защиты изделий от коррозии; защитно-декоративные; специальные для повышения электропроводности, износостойкости, снижения коэффициента трения и др.

При выборе покрытий необходимо учитывать условия эксплуатации изделий, материал детали и защитные свойства покрытий.

Гальванические и химические покрытия. Гальванические покрытия характеризуются: хорошим сцеплением с основным металлом; сравнительно высокими защитными свойствами; высокими механическими свойствами; стойкостью по отношению к органическим растворителям.

К недостаткам следует отнести появление хрупкости в основном металле за счет наводораживания его в процессе осаждения покрытий и неравномерность толщины покрытия на различных участках деталей.

По роду защитного действия гальванические покрытия делятся на анодные и катодные. Анодные покрытия защищают металл электрохимически, и при наличии в них пор или оголенных участков происходит разрушение только самого покрытия; металл детали не разрушается.

Химические (оксидные и фосфатные) покрытия характеризуются малой толщиной покрытия, равномерностью толщины покрытия и хорошим сцеплением с лакокрасочными покрытиями. Защитные и механические свойства этих покрытий невысокие.

Обозначение покрытий. Группы букв и цифр, характеризующих свойства покрытий, разделяются точками и располагаются в следующей последовательности: способ нанесения, материал покрытия, толщина покрытий, степень блеска, вид дополнительной обработки.

Способ нанесения покрытий обозначается: химический – Хим, анодизационный – Ан. Гальванический способ как наиболее распространенный в обозначении покрытия не указывается.

В обозначениях многослойных покрытий указываются все металлы, образующие покрытие в порядке нанесения слоев.

 

Обозначение материалов покрытий.

 


Материал        Обозначение                  

Покрытия

 

Медь                       М

Кадмий                   Кд

Латунь                    Л

Золото                    Зл

Олово                     О

Никель                   Н

Никель черный     Нч

Цинк                      Ц

Палладий               Пд

Родий                     Рд

Серебро                 Ср

Хром                      Х

Хром черный        Хч

Фосфат                  Фос

 

Степень блеска покрытий обозначается следующим образом: зеркальный блеск – зк, блестящий – б, матовый – м, полуматовый – пм. Толщина гальванических покрытий (минимальная) в обозначении указывается цифрами в микронах. Толщина химических покрытий не указывается.

Покрытия, подвергающиеся дополнительной обработке: кадмиевые, цинковые – хроматирование, фосфатирование; серебряные – оксидирование, покрытие гидроокисью бериллия; оксидные, фосфатные, оксидо-фосфатные – наполнение раствором хромпика, наполнение маслом.

Толщина и равномерность толщины гальванического покрытия. Основное значение для защитных свойств гальванических покрытий имеет толщина осажденного слоя металла. повышение толщины покрытия соответственно увеличивает его коррозионную стойкость.

После нанесения гальванических покрытий размеры деталей изменяются. Осаждение гальванических покрытий происходит с неизбежной неравномерностью слоя по толщине. Для простейших деталей типа «вал» неравномерность толщины слоя покрытия можно считать равной минимальной толщине. Для улучшения равномерности толщины покрытия необходимо притуплять острые кромки деталей фасками или закруглять их.

Нанесение покрытий на собранные узлы, литейные детали и детали сложной конфигурации. При нанесении гальванических и химических покрытий на узлы, имеющие клепаные, развальцованные, штифтовые и резьбовые соединения, а также на детали с точечной сваркой или со сложной конфигурацией трудно, а иногда практически невозможно произвести полную отмывку электролита. Аналогично, трудно отмыть электролит из пор литейных деталей и деталей, имеющих глухие отверстия и щели или глубокие отверстия малых диаметров. Наличие остатков электролита часто является причиной возникновения коррозии деталей и снижения качества покрытия. В связи с этим не следует производить отделку нескольких деталей в сборке, а в деталях, требующих нанесения гальванических или химических покрытий, нужно избегать глухих отверстий щелей, полостей.

Не допускается также оксидирование узлов, изготовленных сваркой, деталей из точного стального литья и изготовленных из железного порошка.

Хорошими покрытиями для отделки подобных деталей являются фосфатные, оксидо-фосфатные и никелевые однослойные покрытия.

Нанесение покрытий нескольких видов на одну и ту же деталь в массовом и серийном производстве представляет значительные трудности и в ряде случаев невыполнимо.

Лакокрасочные покрытия. Лакокрасочные покрытия характеризуются высокими защитными и декоративными свойствами, а также возможностью реставрации. Для покрытий применяются эмали и лаки на основе мочевиноформальдегидных, меламиноалкидных, пентафталевых, глифталевых, нитроцеллюлозных, бутилметакрилатных, хлорвиниловых, эпоксидных и кремнеорганических смол.

К специфическим материалам, используемым в оптико-механическом приборостроении, относятся черные матовые и глубокоматовые эмали, предназначенные для окраски внутренних поверхностей оптических приборов. Их назначение – уменьшать светорассеяние и блики в приборах

 

5.2. Ингибиторы коррозии.

 

Ингибитор – это химическое вещество, при добавлении которого в небольших количествах в данную коррозионную среду значительно уменьшается скорость коррозии металлов, находящихся в контакте с этой средой. Как эффективное средство защиты металлов от коррозии применение ингибиторов приобрело особое значение в нефтедобывающей, нефтеперерабатывающей и химической промышленности. Ингибиторы широко используются для защиты от разрушений внешних и внутренних поверхностей труб и аппаратов в циркуляционных охладительных системах, реакторах для переработки и емкостях для хранения химических продуктов, коммуникационных системах и др. Их большое преимущество состоит в том, что они пригодны при защите пораженных коррозией систем без замены материала или конструкции. Число неорганических и органических веществ, применяемых в качестве ингибиторов, непрерывно увеличивается.

В зависимости от способа действия ингибиторы бывают пленкообразующие (пассиваторы) и адсорбирующиеся (включая летучие ингибиторы).

Пленкообразующие ингибиторы (пассиваторы). В качестве пассиваторов могут быть использованы все те вещества, которые образуют с ионами металлов нерастворимые продукты и формируют пленку. В самом общем случае – это пассиваторы металла. определяющую роль в их ингибирующей способности играет величина pH раствора.

Некоторые пассиваторы образуют окисную пленку на металле. Эта пленка имеет толщину до 0.01 мкм и может быть в 30-100 раз толще пленки, образованной на поверхности металла под действием воздуха. Однако при неподходящих условиях или концентрациях пассиваторы способны ускорять коррозионные процессы. К пассиваторам относятся кислород, гидроксильные ионы, нитрат-, нитрит-, фосфат-, молибдат-, бензоат-ионы и др. Они непосредственно или в виде продуктов реакции блокируют анодные и

катодные участки поверхности металла, повышая ее потенциал. Их большое сродство к металлу сочетается с высокой энергией активации образования веществ с новой решеткой (хемосорбция).

Фосфаты, селикаты и бензоаты щелочных металлов являются анодными пассиваторами. Катионы пассиватора могут образовывать нерастворимую гидроокись на катодных участках корродирующего металла.

Некоторые вещества обладают одновременно анодным и катодным действием. К ним относятся атмосферные пассиваторы.

При высокой концентрации кислород тоже действует как пасси

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...