Требования промышленности к качеству железных концентратов
⇐ ПредыдущаяСтр 5 из 5
Руды, содержащие 80–92 % класса –10 мм и не более 8–20 % класса 10–20 мм, нуждаются в предварительном окусковании.
Для качественной характеристики богатых руд важное значение имеют содержание и соотношение нерудных примесей – шлакообразующих компонентов, выражающиеся коэффициентом основности и кремневым модулем. Коэффициент основности (КО) представляет собой отношение суммы содержаний оксидов щелочных земель (кальция и магния) к сумме оксидов кислых компонентов (кремния и алюминия). По величине этого коэффициента железные руды и их концентраты подразделяются на кислые, наиболее часто встречающиеся (КО менее 0,7), самофлюсующиеся (КО 0,7–1,1) и основные (КО более 1,1). Лучшими являются самофлюсующиеся руды. По кремневому модулю (отношению содержаний оксида кремния к оксиду алюминия) ограничивается использование железных руд с модулем ниже 2. Железные руды, требующие обогащения, в настоящее время обеспечивают в России 89 % товарного производства. Они подразделяются на легко- и труднообогатимые, что зависит от их минерального состава и текстурно-структурных особенностей. К легкообогатимым относятся железные руды магнетитового состава, и прежде всего магнетитовые кварциты. Труднообогатимыми являются тонкозернистые полиминеральные железные руды, в которых железо входит в состав нескольких немагнитных минералов (гематит, мартит, сидерит) или рудные минералы (гётит, гидрогётит) образуют порошковатые, оолитовые скрытокристаллические и коллоидальные массы. При измельчении этих руд не удается раскрыть рудные минералы из-за их крайне малых размеров и тонкого прорастания с нерудными минералами. Наиболее характерные примеры труднообогатимых руд – окисленные железистые кварциты Кривого Рога и КМА, бурожелезняковые руды всех типов. Выбор способов обогащения определяется минеральным составом руд, их текстурно-структурными особенностями, а также характером нерудных минералов и физико-механическими свойствами руд.
Магнетитовые руды обогащаются магнитным способом. Применение сухой и мокрой магнитной сепарации для магнетитовых руд обеспечивает получение кондиционных концентратов даже при сравнительно низком содержании железа в исходной руде. При наличии в рудах в промышленном количестве гематита наряду с магнетитом может применяться магнитно-флотационный (для тонковкрапленных руд) или магнитно-гравитационный (для крупновкрапленных руд) способ обогащения. Схемы обогащения магнетитовых кварцитов месторождений Кривого Рога, Курской магнитной аномалии и Кольского полуострова включают дробление, измельчение и магнитное обогащение в слабом поле. Обогащение окисленных железистых кварцитов может производиться магнитным в сильном поле, обжиг-магнитным и флотационным способами. Если в магнетитовых рудах содержатся в промышленных количествах апатит или сульфиды кобальта, меди и цинка, минералы бора и др., то для их извлечения применяется флотация отходов магнитной сепарации. Такие схемы применены на Ковдорском, Высокогорском и Соколовско-Сарбайском ГОКах. Принципиальные схемы обогащения титаномагнетитовых и ильменит-титаномагнетитовых руд включают в себя многостадиальную мокрую магнитную сепарацию. С целью выделения ильменита в титановый концентрат проводится обогащение хвостов мокрой магнитной сепарации флотацией или гравитационным способом с последующей магнитной сепарацией в поле высокой интенсивности. Низкотитанистые железованадиевые руды (месторождения Качканарское, Гусевогорское, Пудожгорское и др.) могут использоваться при получении чугуна по отработанной технологии доменный процесс – двойное конвертирование с извлечением ванадия из шлаков. Другой может быть технология предварительного обогащения руд с получением ильменитового и титаномагнетитового концентратов. Если содержание TiO2 в последнем не выше 4 %, он непосредственно направляется в доменный процесс, а при более высоких содержаниях требуется шихтовка этого концентрата с беститановыми железными рудами. Вместе с тем уже разработаны пирогидрометаллургические технологии, позволяющие экономически выгодно извлекать титан из данных руд (доменный процесс – электроплавка, гидрометаллургия, глубокая металлизация титаномагнетитовых окатышей с селективной коагуляцией железного королька и переводом сопутствующих элементов в шлаковую оболочку).
Серьезные технологические трудности возникают у металлургов при переработке высокотитанистых (TiO2 > 3,0 %) ванадийсодержащих титаномагнетитовых руд и концентратов, так как титан и ванадий не могут извлекаться в отдельные продукты по традиционной технологии и затрудняют ведение металлургического процесса. Институт металлургии Уральского отделения АН России разработал пирометаллургический метод обогащения коллективных концентратов с выделением попутных компонентов в отдельные кондиционные по содержанию продукты, которые могут использоваться по традиционной технологии. По этой технологии тонкоизмельченный коллективный концентрат окомковывается с твердым восстановителем, сырые окатыши подвергаются восстановительному обжигу, при этом окатыши приобретают структуру «ореха» – в ядре концентрируется металлическое железо и ванадий – легированная ванадием сталь, а оксид титана образует шлаковую оболочку. Последующим дроблением и измельчением окатышей обеспечивается вскрытие железного королька, который методом сухой или мокрой магнитной сепарации выделяется в отдельный продукт. Шлаковая составляющая, состоящая преимущественно из оксида титана, подвергается дальнейшей переработке. Извлечение железа в королек и титана в шлаковую оболочку составляет не менее 92 %. Для обогащения гидрогётит-лептохлоритовых оолитовых бурых железняков используются либо гравитационный, либо гравитационно-магнитный (в сильных полях) способ. Глинистые гидрогётитовые и мартитовые (валунчатые) руды обогащаются промывкой. Обогащение сидеритовых руд обычно достигается сепарацией в тяжелых средах с последующим обжигом. При переработке железистых кварцитов и скарново-магнетитовых руд обычно получают концентраты с содержанием железа 62–66 %; для электрометаллургического передела и производства горячебрикетированного железа выпускаются концентраты с содержанием железа не ниже 69,5 % и кремнезема не выше 3,0 %, серы не более 0,06 %; в кондиционных концентратах мокрой магнитной сепарации из апатит-магнетитовых и магномагнетитовых руд содержание железа составляет 62–64 %;
Концентраты гравитационного и гравитационно-магнитного обогащения оолитовых бурых железняков в настоящее время считаются кондиционными при содержании железа 44–49 %, кремнезема – 18–11 %, глинозема – 4–5 %, пентоксида фосфора – 0,6–0,8 %, однако по мере совершенствования методов обогащения требования к концентратам из этих руд будут повышены. Перспективными направлениями и процессами совершенствования технологии переработки различных типов железных руд являются: крупнопорционная радиометрическая сортировка по результатам экспресс-анализа транспортных емкостей на рудоконтролирующих станциях (РКС) как один из элементов системы управления качеством добываемого сырья для рационального использования запасов месторождения и создания эффективной технологии обогащения руд; радиометрическая сепарация кускового материала после крупного дробления (–200 мм) для некоторых типов комплексных руд, например, титаномагнетитовых (удаление отвальных хвостов, упрощение технологической схемы за счет исключения гравитационного цикла) и апатит-магнетитовых (удаление отвальных хвостов, выделение кальцитового продукта, улучшение карбонатного модуля). Эти исследования проводится в соответствии с соответствующими нормативно-методическими документами. обогащение измельченной руды гравитационным методом на основе тяжелых суспензий в гидроциклонах. 53. Железные руды в ряде случаев содержат попутные ценные компоненты, использование которых улучшает технико-экономические показатели работы предприятий по добыче полезных ископаемых и позволяет получать дефицитную товарную продукцию. Из руд, подвергающихся обогащению, титан, медь, кобальт, золото, платина, апатит, редкие металлы и другие компоненты, находящиеся в самостоятельных минеральных формах, как правило, могут быть извлечены в самостоятельные концентраты. Промышленностью освоена технология получения из хвостов магнитного обогащения комплексных руд апатитового, бадделеитового, ильменитового, медного концентратов, удовлетворяющих требованиям промышленности; кобальт-пиритного концентрата, пригодного для дальнейшей гидрометаллургической переработки при содержании кобальта не ниже 0,12 %. Флотацией хвостов мокрой магнитной сепарации комплексных руд могут быть получены золото-сульфидный и боратовый концентраты. Извлечение самородного золота возможно из хвостов обогащения железистых кварцитов.
Попутные ценные компоненты железных руд и концентратов переходят в чугун и сталь или уходят в шлаки, откуда могут быть частично извлечены. Такие полезные примеси, как никель, кобальт, марганец, являющиеся легирующими компонентами, частично переходя из чугуна в сталь, дают возможность получения специальных сталей с заданными свойствами. Из шлаков металлургического передела титаномагнетитовых концентратов извлекается ванадий; фосфорсодержащие шлаки используются в качестве удобрений. Из пироксеновых хвостов обогащения титаномагнетитовых руд может извлекаться скандий. Перспективными являются предложенные технологии извлечения из железных руд и продуктов их переработки германия и других редких элементов. Для попутных компонентов в соответствии с «Рекомендациями по комплексному изучению месторождений и подсчету запасов попутных полезных ископаемых и компонентов», утвержденными МПР России в установленном порядке, необходимо выяснить формы нахождения и баланс их распределения в продуктах переработки руд, а также установить условия, возможность и экономическую целесообразность их извлечения. V. Изучение гидрогеологических, инженерно-геологических, экологических 54. Гидрогеологическими исследованиями должны быть изучены основные водоносные горизонты, которые могут участвовать в обводнении месторождения, выявлены наиболее обводненные участки и зоны и решены вопросы использования или сброса рудничных вод. По каждому водоносному горизонту следует установить его мощность, литологический состав, типы коллекторов, условия питания, взаимосвязь с другими водоносными горизонтами и поверхностными водами, положение уровней подземных вод и другие параметры, определить возможные водопритоки в эксплуатационные горные выработки, проходка которых предусмотрена в технико-экономическом обосновании (ТЭО) кондиций, и разработать рекомендации по их защите от подземных вод. Необходимо также: изучить химический состав и бактериологическое состояние вод, участвующих в обводнении месторождения, их агрессивность по отношению к бетону, металлам, полимерам, содержание в них полезных и вредных примесей; по разрабатываемым месторождениям привести химический состав рудничных вод и промстоков; оценить возможность использования этих вод для водоснабжения или извлечения из них полезных компонентов, а также возможное влияние их дренажа на действующие в районе месторождения подземные водозаборы; дать рекомендации по проведению в последующем необходимых специальных изыскательских работ, оценить влияние сброса рудничных вод на окружающую среду; оценить возможные источники хозяйственно-питьевого и технического водоснабжения, обеспечивающие потребность будущих предприятий по добыче и переработке минерального сырья. Утилизация дренажных вод предполагает подсчет их эксплуатационных запасов, который необходимо производить, руководствуясь соответствующими методическими документами. По результатам гидрогеологических исследований должны быть даны рекомендации для проектирования горного предприятия: по способам осушения геологического массива; по водоотводу; по утилизации дренажных вод; по источникам водоснабжения; по природоохранным мерам. 55. Проведение инженерно-геологических исследований на месторождениях при разведке необходимо для информационного обеспечения проекта разработки (расчета основных параметров карьера, подземных горных выработок и целиков, типовых паспортов буровзрывных работ и крепления) и повышения безопасности ведения горных работ. Инженерно-геологические исследования на месторождении необходимо проводить в соответствии с «Методическим руководством по изучению инженерно-геологических условий рудных месторождений при разведке», рассмотренным и одобренным Департаментом геологии и использования недр Министерства природных ресурсов Российской Федерации (протокол №7 от 4 сентября 2000 г.) и методическими рекомендациями: «Инженерно-геологические, гидрогеологические и геоэкологические исследования при разведке и эксплуатации рудных месторождений», рассмотренными и одобренными Управлением ресурсов подземных вод, геоэкологии и мониторинга геологической среды Министерства природных ресурсов Российской Федерации (протокол №5 от 12 апреля 2002 г.). Инженерно-геологическими исследованиями должны быть изучены: физико-механические свойства руд, рудовмещающих пород и перекрывающих отложений, определяющие характеристику их прочности в естественном и водонасыщенном состояниях; инженерно-геологические особенности массива пород месторождения и их анизотропия, состав пород, трещиноватость, тектоническая нарушенность, текстурные особенности, закарстованность, газоносность, разрушенность в зоне выветривания; охарактеризованы современные геологические процессы, которые могут осложнить разработку месторождения. В районах с развитием многолетнемерзлых пород следует установить температурный режим пород, положение верхней и нижней границ мерзлотной зоны, контуры и глубины распространения таликов, характер изменения физических свойств пород при оттаивании, глубину слоя сезонного оттаивания и промерзания. В результате инженерно-геологических исследований должны быть получены материалы по прогнозной оценке устойчивости пород в подземных горных выработках, бортах карьера и расчету основных параметров карьера. При наличии в районе месторождения действующих шахт или карьеров, расположенных в аналогичных гидрогеологических и инженерно-геологических условиях, для характеристики разведываемой площади следует использовать данные о степени обводненности и инженерно-геологических условиях этих шахт и карьеров. 56. Месторождения железных руд разрабатываются открытым (карьеры) и подземным (шахтные комплексы) способами. Выбор способа отработки зависит от горно-геологических условий залегания рудных тел, принятых горнотехнических показателей, схем добычи и обосновывается в ТЭО кондиций. К подземному способу добычи относится и новый перспективный метод скважинной гидродобычи (СГД) железных руд. Скважинная гидродобыча может использоваться для добычи рыхлых разновидностей железных руд. Опытная и опытно-промышленная добыча этих руд показала высокую экономическую эффективность этого способа, который требует меньше времени и капитальных вложений и является наиболее экологичным. 57.По районам новых месторождений необходимо указать местоположение площадей с отсутствием залежей полезных ископаемых, где могут быть размещены объекты производственного и жилищно-гражданского назначения, отвалы пустых пород. 58. Для месторождений, где установлена природная газоносность отложений (метан, сероводород и др.), должны быть изучены закономерности изменения содержания и состава газов по площади и с глубиной. 59. Следует определить влияющие на здоровье человека факторы (пневмокониозоопасность, повышенная радиоактивность, геотермические условия и др.). 60.Гидрогеологические, инженерно-геологические, геокриологические, горно-геологические и другие природные условия должны быть изучены с детальностью, обеспечивающей получение исходных данных, необходимых для составления проекта разработки месторождения. При особо сложных гидрогеологических и горнотехнических условиях разработки, требующих постановки специальных работ, направление, объемы, сроки и порядок проведения исследований согласовываются с проектными организациями. 61. Экологическими исследованиями должны быть: установлены фоновые параметры состояния окружающей среды (уровень радиации, качество поверхностных и подземных вод и воздуха, характеристика почвенного покрова, растительного и животного мира и т. д.); определены предполагаемые виды химического и физического воздействия намечаемого к строительству объекта на окружающую природную среду (запыление прилегающих территорий, загрязнение поверхностных и подземных вод, почв рудничными водами и промстоками, воздуха выбросами в атмосферу и т. д.), объемы изъятия для нужд производства природных ресурсов (лесных массивов, воды на технические нужды, земель для размещения основных и вспомогательных производств, отвалов вскрышных и вмещающих горных пород, некондиционных руд и т. д.); оценены характер, интенсивность, степень и опасность воздействия, продолжительность и динамика функционирования источников загрязнения и границы зон их влияния,даны рекомендации по проведению природоохранных мероприятий. Для решения вопросов, связанных с рекультивацией земель, следует определить мощность почвенного покрова и произвести агрохимические исследования рыхлых отложений, а также выяснить степень токсичности пород вскрыши и возможность образования на них растительного покрова. Должна быть определена технология хранения хвостов производства с учетом их воздействия на окружающую среду, изучена возможность использования оборотных вод, оценены направления использования отходов предложенной схемы обогащения руд, даны рекомендации по очистке промстоков и объему потребления технической воды. 62.Другие полезные ископаемые, образующие во вмещающих и перекрывающих породах самостоятельные залежи, должны быть изучены в степени, позволяющей определить их промышленную ценность и область возможного использования в соответствии с «Рекомендациями по комплексному изучению месторождений и подсчету запасов попутных полезных ископаемых и компонентов», утвержденными МПР России в установленном порядке. VI. Подсчет запасов 63. Подсчет и квалификация по степени разведанности запасов месторождений железных руд производится в соответствии с требованиями «Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых», утвержденной приказом МПР России от 11 декабря 2006 г. № 278. 64. Запасы подсчитываются по подсчетным блокам, запасы руды в которых не должны превышать, как правило, годовую производительность будущего горного предприятия. Участки рудных тел, выделяемые в подсчетные блоки, должны характеризоваться: одинаковой степенью разведанности и изученности параметров, определяющих количество и качество руд; однородностью геологического строения или примерно одинаковой или близкой степенью изменчивости мощности, внутреннего строения рудных тел, вещественного состава, основных показателей качества и технологических свойств руды; выдержанностью условий залегания рудных тел, определенной приуроченностью блока к единому структурному элементу (крылу, замковой части складки, тектоническому блоку, ограниченному разрывными нарушениями); общностью горнотехнических условий разработки. По падению рудных тел подсчетные блоки следует разделять горизонтами горных работ или скважин с учетом намечаемой последовательности отработки запасов. 65. При подсчете запасов должны учитываться следующие дополнительные условия, отражающие специфику месторождений железных руд. Запасы категории А при разведке подсчитываются только на месторождениях 1-й группы в блоках, оконтуренных со всех сторон разведочными выработками, без экстраполяции. К ним относятся запасы, выделенные на участках детализации или в пределах других частей рудных тел, степень разведанности которых соответствует требованиям Классификации к этой категории. На разрабатываемых месторождениях запасы категории А подсчитываются по данным эксплуатационной разведки и горно-подготовительных выработок. К ним относятся запасы подготовленных или готовых к выемке блоков, отвечающие по степени разведанности требованиям Классификации к этой категории. Запасы категории В при разведке подсчитываются только на месторождениях 1-й и 2-й групп. К ним относятся запасы, выделенные на участках детализации или в пределах других частей рудных тел, степень разведанности которых соответствует требованиям Классификации к этой категории. Контур запасов категории В должен быть проведен по разведочным выработкам, а основные горно-геологические характеристики рудных тел и качество руд в пределах этого контура определены по достаточному объему представительных данных. На разрабатываемых месторождениях запасы категории В подсчитываются по данным доразведки, эксплуатационной разведки и горно-подготовительных выработок. К ним относятся запасы, отвечающие по степени изученности требованиям Классификации к этой категории. К категории С1 относятся запасы на участках месторождений, в пределах которых выдержана принятая для этой категории сеть скважин и горных выработок, а достоверность полученной при этом информации подтверждена на новых месторождениях результатами, полученными на участках детализации, а на разрабатываемых месторождениях – данными эксплуатации. Контуры запасов категории С1 определяются по скважинам и данным геофизических исследований, а для наиболее выраженных и крупных тел – геологически обоснованной экстраполяцией, учитывающей изменения морфоструктурных особенностей, размеров, мощностей рудных тел и качества руд. Запасы категории С2подсчитываются по рудным телам, вскрытым редкой сетью скважин, а также путем экстраполяции по простиранию и падению к разведанным рудным телам и в пределах выявленных геофизических аномалий, рудный характер которых подтвержден отдельными скважинами. При определении контуров подсчета запасов категории С2 следует учитывать генетический тип месторождения, его место в геологической структуре района, условия залегания рудных тел и установленные на месторождении закономерности изменения размеров, формы, мощностей рудных тел и состава руд. 66. Запасы подсчитываются раздельно по категориям разведанности, способам отработки (карьерами, штольневыми горизонтами, шахтами), промышленным (технологическим) типам и сортам руд и их экономическому значению (балансовые, забалансовые). При разделении запасов железных руд по категориям в качестве дополнительного классификационного показателя могут использоваться количественные и вероятностные оценки точности и достоверности определения основных подсчетных параметров. При невозможности оконтуривания количественные соотношения различных промышленных (технологических) типов и сортов определяются статистически. Забалансовые (потенциально-экономические) запасы подсчитываются и учитываются в том случае, если в ТЭО кондиций доказана возможность их сохранения в недрах для последующего извлечения или целесообразность попутного извлечения, складирования и сохранения для использования в будущем. При подсчете забалансовых запасов производится их подразделение в зависимости от причин отнесения запасов к забалансовым (экономических, технологических, гидрогеологических, горнотехнических, экологических и др.). Балансовые и забалансовые запасы руды подсчитываются без учета влажности (сухая руда) с указанием влажности сырой руды. Для влагоемких, пористых руд производится также подсчет запасов сырой руды. 67. На разрабатываемых месторождениях вскрытые, подготовленные и готовые к выемке, а также находящиеся в охранных целиках горно-капитальных и горно-подготовительных выработок запасы руд подсчитываются отдельно с подразделением по категориям в соответствии со степенью их изученности. 68.Запасы руд, заключенные в охранных целиках крупных водоемов и водотоков, населенных пунктов, капитальных сооружений и сельскохозяйственных объектов, заповедников, памятников природы, истории и культуры, относятся к балансовым или забалансовым в соответствии с утвержденными кондициями. 69. На разрабатываемых месторождениях для контроля за полнотой отработки ранее утвержденных запасов и обоснования достоверности вновь подсчитанных запасов необходимо производить сопоставление данных разведки и эксплуатации по запасам, условиям залегания, морфологии, мощности, внутреннему строению рудных тел, содержанию полезных компонентов в соответствии с «Методическими рекомендациями по сопоставлению данных разведки и разработки месторождений твердых полезных ископаемых», утвержденными МПР России в установленном порядке. В материалах сопоставления должны быть приведены контуры ранее утвержденных органами госэкспертизы и погашенных запасов (в том числе добытых и оставшихся в целиках), списанных как неподтвердившихся, контуры площадей приращиваемых запасов, а также сведения о запасах, числящихся на государственном балансе (в том числе – об остатке запасов, ранее утвержденных уполномоченным экспертным органом); представлены таблицы движения запасов (по категориям, рудным телам и месторождению в целом) и баланс руды с характеристикой ее качества в контуре погашенных запасов, отражающий изменение утвержденных уполномоченным экспертным органом запасов при доразведке, потери при добыче и транспортировке, выход товарной продукции и потери при переработке руд. Результаты сопоставления сопровождаются графикой, иллюстрирующей изменение представлений о горно-геологических условиях месторождения. Если данные разведки в целом подтверждаются разработкой или имеющиеся незначительные расхождения не влияют на технико-экономические показатели горнодобывающего предприятия, для сопоставления данных разведки и разработки могут быть использованы результаты геолого-маркшейдерского учета. По месторождению, на котором по мнению недропользователя утвержденные уполномоченным экспертным органом запасы и (или) качество руд не подтвердились при разработке или необходимо введение поправочных коэффициентов в ранее утвержденные параметры или запасы, обязательным является выполнение специального подсчета запасов по данным доразведки и эксплуатационной разведки и оценка достоверности результатов, полученных при проведении этих работ. При анализе результатов сопоставления необходимо установить величины изменений при разработке или доразведке утвержденных уполномоченным экспертным органом подсчетных параметров (площадей подсчета, мощностей рудных тел, содержаний полезных компонентов, объемных масс и т. д.), запасов и качества руд, а также выяснить причины этих изменений 70. В последние годы при подсчете запасов рудных месторождений находит применение метод геостатистического моделирования, позволяющий использовать процедуру крайгинга для исследования закономерностей пространственного распределения изучаемых признаков (концентраций полезного компонента, мощностей рудных пересечений, линейных содержаний) и их оценки с определением амплитуды возможных ошибок. Эффективность применения крайгинга в значительной степени обусловлена количеством и качеством исходной разведочной информации, методологией анализа первичных данных и моделирования, отвечающей индивидуальным геологическим особенностям строения разведываемого месторождения (законам распределения подсчетных параметров, характеру тренда и анизотропии, влиянию структурных границ, структуре и качеству экспериментальных вариограмм, параметрам поискового эллипсоида и др.). При использовании процедуры крайгинга количество и плотность разведочных пересечений должны быть достаточными для обоснования оптимальных интерполяционных формул (для двумерного моделирования – не менее нескольких десятков разведочных пересечений, для трехмерного – не менее первых сотен проб). Изучение свойств пространственных переменных рекомендуется производить на участках детализации. Вычисление вариограмм производится на основе данных опробования по сквозным рудным пересечениям или составным пробам, длина которых согласуется с уступом карьера и интервалом опробования. При построении блочной геостатистической модели месторождения максимально возможный размер элементарного подсчетного блока выбирается исходя из планируемой технологии добычи, минимальный определяется плотностью созданной на месторождении разведочной сети наблюдений (не рекомендуется принимать размер сторон элементарного блока менее 1/4 средней плотности сети). Результаты подсчета запасов могут быть представлены в двух видах: при расчете по сетке одинаковых равноориентированных блоков составляются таблицы подсчетных параметров по всем элементарным блокам совместно со значениями дисперсии крайгинга; при расчете крупными геологическими блоками индивидуальной геометрии каждый блок должен быть привязан в пространстве и иметь список проб, входящих в зону влияния. Все массивы цифровых данных (данные опробования, координаты проб или рудных пересечений, аналитические выражения структурных вариограмм и др.) должны представляться в форматах, доступных для экспертизы с использованием наиболее распространенных программных комплексов (например, в виде DBF-файлов с отдельным указанием способа кодирования пропущенных значений или в виде ASCII-файлов стандартного формата GEOEAS). Модели симметризующих преобразований, трендов и вариограмм, прочие параметры представляются в аналитическом и описательном виде. Считается, что геостатистический способ подсчета запасов дает наилучшую возможность определения оценок средних содержаний полезного компонента в блоках, рудных телах и по месторождению в целом, позволяет снизить ошибки оконтуривания рудных тел со сложной морфологией и внутренним строением. Вместе с тем, геостатистические методы подсчета запасов должны быть контролируемыми в своем применении и подчинены особенностям геологического строения месторождения. Результаты геостатистического моделирования и оценивания должны проверяться (сравниваться) с результатами традиционных методов подсчета запасов на представительных участках. 71. При компьютерном подсчете запасов должна быть обеспечена возможность просмотра, проверки и корректировки исходных данных (координаты разведочных выработок, данные инклинометрии, отметки контактов, результаты опробования и др.), результатов промежуточных расчетов и построений (каталог рудных пересечений, выделенных в соответствии с кондициями; геологические разрезы или планы с контурами промышленного оруденения; проекции рудных тел на горизонтальную или вертикальную плоскость; каталог подсчетных параметров по блокам, уступам, разрезам) и сводных результатов подсчета запасов. Выходная документация и машинная графика должны отвечать существующим требованиям к этим документам по составу, структуре, форме и др. 72. Подсчет запасов попутных полезных ископаемых и компонентов производится в соответствии с «Рекомендациями по комплексному изучению месторождений и подсчету запасов попутных полезных ископаемых и компонентов», утвержденными МПР России в установленном порядке. 73. Подсчет запасов оформляется в соответствии с «Методическими рекомендациями по составу и правилам оформления представляемых на государственную экспертизу материалов по подсчету запасов металлических и неметаллических полезных ископаемых», утвержденными МПР России в установленном порядке.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|