Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Общенаучное значение полупроводников




 

Важнейшая область применения полупроводниковых материалов - микроэлектроника <http://ru.wikipedia.org/wiki/%D0%9C%D0%B8%D0%BA%D1%80%D0%BE%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BD%D0%B8%D0%BA%D0%B0>. Полупроводниковые материалы составляют основу современных больших и сверхбольших интегральных схем, которые делают главным образом на основе Кремния. Дальнейший прогресс в повышении быстродействия и в снижении потребляемой мощности связан с созданием интегральных схем на основе GaAs <http://ru.wikipedia.org/wiki/%D0%90%D1%80%D1%81%D0%B5%D0%BD%D0%B8%D0%B4_%D0%B3%D0%B0%D0%BB%D0%BB%D0%B8%D1%8F>, InP <http://ru.wikipedia.org/wiki/%D0%A4%D0%BE%D1%81%D1%84%D0%B8%D0%B4_%D0%B8%D0%BD%D0%B4%D0%B8%D1%8F> и их твёрдых растворов с др. соединениями типа АIIIВV. В больших масштабах используют полупроводниковые материалы для изготовления «силовых» полупроводниковых приборов <http://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D1%83%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%B8%D0%BA%D0%BE%D0%B2%D1%8B%D0%B5_%D0%BF%D1%80%D0%B8%D0%B1%D0%BE%D1%80%D1%8B> (вентили, тиристоры, мощные транзисторы). Здесь также основным материалом является Кремний, а дальнейшее продвижение в область более высоких рабочих температур связано с применением GaAs, SiC <http://ru.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D0%B1%D0%B8%D0%B4_%D0%BA%D1%80%D0%B5%D0%BC%D0%BD%D0%B8%D1%8F> и др. широкозонных полупроводниковых материалов. С каждым годом расширяется применение полупроводниковых материалов в солнечной энергетике. Основными полупроводниковыми материалами для изготовления солнечных батарей <http://ru.wikipedia.org/wiki/%D0%A1%D0%BE%D0%BB%D0%BD%D0%B5%D1%87%D0%BD%D1%8B%D0%B5_%D0%B1%D0%B0%D1%82%D0%B0%D1%80%D0%B5%D0%B8> являются Si, GaAs, гетероструктуры GaxAl1-xAs/GaAs, Cu2S/CdS, α-Si:H, гетероструктуры α-Si:H/α-SixC1-x:H. С применением в солнечных батареях некристаллических гидрированных полупроводниковых материалов связаны перспективы резкого снижения стоимости солнечных батарей. Полупроводниковые материалы используют для создания полупроводниковых лазеров <http://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D1%83%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%B8%D0%BA%D0%BE%D0%B2%D1%8B%D0%B9_%D0%BB%D0%B0%D0%B7%D0%B5%D1%80> и светодиодов <http://ru.wikipedia.org/wiki/%D0%A1%D0%B2%D0%B5%D1%82%D0%BE%D0%B4%D0%B8%D0%BE%D0%B4>. Лазеры делают на основе ряда прямозонных соединений типа AIIIBV, AIIBIV, AIVBVI и др. Важнейшими материалами для изготовления лазеров являются гетероструктуры: GaxAl1-xAs/GaAs, GaxIn1-xAsyP1-y/InP, GaxIn1-xAs/InP, GaxIn1-xAsyP1-y/GaxAs1-xPx, GaN/AlxGa1-xN. Для изготовления светодиодов широко используют: GaAs <http://ru.wikipedia.org/wiki/%D0%90%D1%80%D1%81%D0%B5%D0%BD%D0%B8%D0%B4_%D0%B3%D0%B0%D0%BB%D0%BB%D0%B8%D1%8F>, GaP, GaAs1-xPx, GaxIn1-xAs, GaxAl1-xAs, GaN <http://ru.wikipedia.org/wiki/%D0%9D%D0%B8%D1%82%D1%80%D0%B8%D0%B4_%D0%B3%D0%B0%D0%BB%D0%BB%D0%B8%D1%8F> и др. Полупроводниковые материалы составляют основу современных приемников оптического излучения (фотоприемников) для широкого спектрального диапазона. Их изготовляют на основе Ge <http://ru.wikipedia.org/wiki/%D0%93%D0%B5%D1%80%D0%BC%D0%B0%D0%BD%D0%B8%D0%B9>, Si <http://ru.wikipedia.org/wiki/%D0%9A%D1%80%D0%B5%D0%BC%D0%BD%D0%B8%D0%B9>, GaAs <http://ru.wikipedia.org/wiki/GaAs>, GaP <http://ru.wikipedia.org/wiki/GaP>, InSb <http://ru.wikipedia.org/wiki/InSb>, InAs <http://ru.wikipedia.org/wiki/InAs>, GaxAl1-xAs, GaxIn1-xAs, GaxIn1-xAsyP1-y, CdxHg1-xТе, PbxSn1-xTe и ряда др. полупроводниковых материалов. Полупроводниковые лазеры и фотоприемники - важнейшие составляющие элементной базы волоконно-оптической линий связи. Полупроводниковые материалы используются для создания различных СВЧ приборов (биполярных и полевых транзисторов, транзисторов на «горячих» электронах, лавинопролетных диодов и др.). Другие важные области применения полупроводниковых материалов: детекторы ядерных излучений (используют особо чистые Ge, Si, GaAs, CdTe <http://ru.wikipedia.org/wiki/CdTe> и др.), изготовление термохолодильников (теллуриды и селениды висмута и сурьмы), тензодатчиков, высокочувствительных термометров, датчиков магнитных полей и др.

Развитие современной полупроводниковой электроники и переход к наноэлектронике связаны с использованием полупроводниковых наноматериалов и нанотехнологий. Ожидается, что их применение в наноэлектронике приведет к созданию наноструктурных микропроцессоров, увеличению пропускной способности каналов связи, появлению нового поколения роботизированных систем, новые возможности представятся при объединении устройств наноэлектроники с наноструктурными сенсорами и т.д. Развитие наноэлектроники предусматривает использование в достижениях физики квантоворазмерных систем и включает применение нанотехнологий, которые обладают атомной точностью при получении полупроводниковых наноструктур с необходимым химическим составом и конфигурацией и включают методы комплексной диагностики наноструктур, в том числе контроль в процессе изготовления и управление на этой основе технологическими процессами.

 


 

Вывод

 

Область применения полупроводников не ограничивалась радиотехникой. Еще в 1932 г. А. Ф. Иоффе создал из закиси меди, а затем из селена фотоэлементы, вырабатывавшие при их освещении электрический ток без помощи внешних источников энергии. Однако их КПД при использовании солнечной энергии не превышал 0,05-0,1%. Но уже перед Великой Отечественной войной в СССР были созданы фотоэлементы из сернистого таллия и сернистого серебра с КПД до 1%. В 1954 г. был создан кремниевый фотоэлемент. В этом же году впервые была построена солнечная батарея, состоявшая из большого числа кремниевых фотоэлементов. В начале 1955 г. были созданы фотоэлементы с КПД до 6%. Современные фотоэлементы имеют КПД до 20% и выше. Располагая полупроводниковый диод рядом с радиоактивным материалом, получают атомную батарею, которая может вырабатывать электрическую энергию на протяжении многих лет. На основе полупроводников были созданы фотодиоды. В сочетании с электрическими счетчиками они ведут учет движущихся объектов - от производимых деталей до пассажиров в метро. Приборы, созданные с применением фотодиодов, могут определять бракованные изделия на конвейере и выключать оборудование, если в его опасную зону попадают руки рабочих. Создание приборов на основе полупроводников произвело в середине XX в. техническую революцию. Дальнейшее их развитие привело к созданию интегральных микросхем, появлению новых поколений электронно-вычислительных машин и персональных компьютеров. Сейчас ни одна область науки и техники не обходится без их применения.


 

Список Интернет-ресурсов

 

1) <http://myrt.ru/history/print:page,1,981-poluprovodniki.html>

) <http://gete.ru/post_1172774080.html>

) http://www.alhimik.ru/read/stones15.html

) http://www.vsya-elektrotehnika.ru/glava11/g1_7.html

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...