Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Таксономия и внешнее описание растения.

Чилибуха - Strychnos nux-vomica L. (от греч. strychnos – название неизвестного ядовитого растения; лат. nux – орех, vomicus, a, um – ядовитый).

Семейство Логаниевые – Loganiaceae.

Другие названия: рвотный орех.

 

Чилибуха – дерево до 1,5 м высотой, с коротким толстым искривленным стволом и вильчато разветвленными неправильно изогнутыми ветвями. Кора гладкая, серовато-желтая. Молодые ветви тупочетырехгранные, короткосероопушенные. Листья 5-10 см, супротивные, черешковые, яйцевидные с клиновидным или округлым основанием, короткозаостренные, кожистые, блестящие, голые, с 3-5 главными дуговидными жилками. Соцветия – верхушечные полузонтики. Цветки мелкие мясистые. Чашечка маленькая короткоколокольчатая, пяти- реже четырехзубчатая, опушенная. Венчик гвоздевидный, с длинной трубкой, опушенной у основания, и пятью- реже четырехлопастным отгибом, зеленовато-беловатый или желтоватый. Тычинок 5, реже 4, нити срастаются с трубкой венчика. Пестик с верхней двугнездной завязью, длинным нитевидным столбиком и двулопастным рыльцем. Плод почти шаровидный, красновато-желтый, гладкий, ягодообразный, по форме и окраске похожий на апельсин, 3-6 см в диаметре, с твердой ломкой кожурой и студенистой мякотью, содержащей 2-8 семян. Семена круглые, сплюснутые, дисковидные, с одной стороны – выпуклые, с другой – вогнутые или плоские, 1,5-2,5 см в диаметре, обычно желтовато-серые с шелковистым блеском от многочисленных, покрывающих поверхность семени прижатых волосков. Семя с твердым роговидным грязновато-белым эндоспермом, составляющим большую часть семени и маленьким зародышем (Рис. 1.) (6),(18).

 

Географическое распространение и местообитание.

Распространена на юге Индии, Цейлоне, Бирме, Индокитае, островах Зондского архипелага, Филиппинах, северной Австралии. Культивируется в Африке. В странах СНГ возможно культивирование только в закрытом грунте. Растение тропических лесов (1),(18).

 

Определение сырья.

В качестве лекарственного сырья используют импортное сырье – семена чилибухи, или рвотный орех: собранные в фазу плодоношения и высушенные семена дикорастущего дерева чилибухи Strychnos nux-vomica L., сем. Логаниевые – Loganiaceae (15).

 

Заготовка.

Собирают в октябре-ноябре зрелые плоды, рассекают их и выбирают семена, отбрасывая недоразвитые и загнившие. Сушат на воздухе или в печи при температуре 50-60°С. Влажность сырья после сушки должна быть не более 10% (6).

 

Внешний вид сырья.

Семена круглые плоские, с одной стороны – немного выпуклые, с другой – вогнутые или плоские, иногда немного согнутые. В центре выпуклой стороны – рубчик в виде маленького бугорка, от которого в радиальном направлении тянется валик, образованный схождением кончиков волосков и оканчивающийся на краю семени

 

сосочком – семявходом. Семя – 1,5-2,5 см в поперечнике, 3-6 мм в толщину, очень твердое, может быть только распилено или разбито молотком. После размачивания в горячей воде семя становится мягким, упругим и легко режется. Под кожурой – беловато-серый роговидный твердый эндосперм, в полости которого имеющей вид широкой щели лежит светлый, часто зеленоватый, довольно крупный – до 7 мм длины зародыш. Его корешок доходит до сосочка у края семени, а 2 тонкие широкосердцевидные семядоли лежат одна над другой. Цвет семени серый, зеленовато- или буровато-серый. Снаружи семена шелковисто-блестящие, вследствие многочисленных тесно прилегающих к поверхности семени волосков. Запах отсутствует. Вкус не определяется (6),(15),(18).

 

Микроскопический анализ сырья.

На поперечном срезе видно, что каждая клетка эпидермиса развилась в длинный, до 1 мм волосок, с тупым концом и расширенным булавовидным или луковицеобразным основанием, имеющий сильно утолщенные стенки с порами. Волосок согнут под углом 45°, направлен радиально к центру и тесно прижат к семени. Волоски одревесневшие, легко расщепляются на тонкие фибриллы, окрашиваются раствором флороглюцина в соляной кислоте в малиново-красный цвет. Под эпидермисом лежит несколько слоев сдавленных клеток оболочки семени, а под ними эндосперм из толстостенных многоугольных клеток с капельками жирного масла и алейроновыми зернами неправильной формы, размером 5-30, редко 50 мкм, в поперечнике с глобоидами. Клеточные стенки утолщенные, как бы стекловидные, тонкопористые. Очень тонкие нити протоплазмы (плазмодесмы), пронизывая толщу стенок, связывают между собой содержимое соседних клеток. При окраске разбухшего в воде препарата спиртовым раствором йода содержимое полостей клеток и плазмодесмы окрашивается в бурый цвет, стенки клеток остаются бесцветными. Зародыш состоит из тонкой меристематической ткани. Крахмал и кристаллические включения отсутствуют (15),(18).

 

Химический состав.

Семена содержат 2-3% алкалоидов, из которых приблизительно 47% приходится на долю стрихнина, и столько же – на долю его диметоксипроизводного – бруцина.      В небольших количествах содержатся родственные им вомицин, псевдострихнин, псевдобруцин, a-колубрин, b-колубрин, струксин, которые в сумме составляют не более 0,1%. Из не алкалоидных веществ встречаются хлорогеновая кислота, гликозид логанин, тритерпеноидное соединение циклоарсенол, стигмастерин.

Из листьев выделен алкалоид стрихницин (18).

 

Стрихнин (I) открыт в 1818 г. Кристаллизуется из этилового спирта в виде бесцветных четырехгранных призм. Трудно растворим в воде, эфире, легче – в бензоле, спирте; t°пл= 286-288°С; [a]D = –104° (в абсолютном спирте), и –139,3° (в хлороформе). Дает много хорошо кристаллизующихся солей, что позволяет использовать его в качестве оптически активного основания для разделения рацематов (1),(2).

 

Бруцин (II) открыт в 1818 г. Кристаллизуется из разбавленного этилового спирта в виде моноклинных призм, представляющих собой тетрагидрат. Трудно растворим в горячей воде, легко – в спирте, хлороформе, почти не растворим в эфире; тетрагидратная форма плавится при t° = 105°С, безводный алкалоид – при 178°С; [a]D = +119-127° (в хлороформе). Дает много кристаллических солей с азотной кислотой (2).

 

 

Вомицин (III) впервые выделил Гмелин в 1929 г. из маточников, оставшихся после выделения стрихнина; t°пл= 282°С; [a]D = +80,4° (этанол) (1).

 

 

Псевдострихнин (IV) обнаружен Варнатом в 1931 г. t°пл= 266-268°С; [a]D = –58° (этанол), и –85,9° (хлороформ) (1).

 

 

a-колубрин (V) открыл Варнат в 1931 г. t°пл= 184°С; [a]D = –76,5° (80% этанол) (1),(2).

 

 

b-колубрин (VI) открыл Варнат в 1931 г. t°пл= 222°С; [a]D = –107,7° (80% этанол) (1),(2).

 

Биосинтез стрихнина.

Стрихнин является монотерпеноидным индольным алкалоидом, и синтезируется из их общего предшественника – стриктозидина (винкозида) (I) (10).

В биосинтезе стрихнина можно выделить несколько стадий:

На первой стадии происходит разрыв пиранового кольца (II), с отщеплением глюкозы, и последующим образованием центрального метаболита целого ряда алкалоидов – гизосхизина (III) (19).

 

На следующей стадии гизосхизин претерпевает метилирование с увеличением боковой цепи на один углеродный атом и образованием соединения, состоящего из 21 атома углерода (IV) (20).

 

Таким образом, осуществляется переход от С20-соединений к С21-соединениям – предшественникам группы стрихнина.

 

Затем происходит многоступенчатая перегруппировка по типу преакуаммицина, в результате которой получается С21-аналог преакуаммицина (V), и далее, после замыкания лактамного (С) и оксепинового (G) циклов образуется                    стрихнин (VI) (21),(22).

 

2.1.9. Доказательство строения стрихнина.

Уже в самом начале изучения строения стрихнина и бруцина была отмечена близость свойств этих оснований, которая в ряде случаев доходила до полной идентичности. Это навело исследователей на мысль, что бруцин является диметоксипроизводным стрихнина. Это предположение было подтверждено окислением хромовой кислотой в определенных условиях, при котором получался один и тот же продукт – т.н. кислота Ханссена (I) – продукт разрушения ароматического кольца алкалоидов (1).

 

 

 

 

При нагревании алкалоидов со спиртовой щелочью происходит присоединение воды и образование стрихниновой и бруциновой кислоты (II), которые при действии кислот легко переходят обратно в стрихнин и бруцин. Это указывает на наличие в молекуле лактамной группировки, разрушающейся в щелочном растворе (1).

 

 

 

Было проведено множество экспериментов по окислению стрихнина различными окислителями. Наиболее важно окисление азотной кислотой, при котором происходит образование динитрострихнона. Долгое время его считали производным хинолина или изохинолина, но при дальнейшем окислении вещества был получен динитроизатин (III), что доказывало наличие индольного ядра в молекуле (2).

 

 

Далее, было доказано, что один из кислородных атомов имеет карбонильный характер, связан с азотом, индифферентен, и в то же время нейтрализует связанный с ним атом азота. Второй атом кислорода также индифферентен (2).

Стрихнин и бруцин дают бензилиденовые производные, реагируют с азотистой кислотой, давая изонитрозопроизводные (IV). Эти реакции доказывают наличие реакционноспособной метиленовой группы (1).

 

 

Алкалоиды содержат одну двойную связь, которая легко гидрируется с образованием дигидрострихнина и дигидробруцина. При более энергичном восстановлении были получены тетрагидрострихнин, стрихнидин, дезоксистрихнин, дигидрострихнолин (1).

Исследования формулы стрихнина продолжались более ста лет со времени его открытия, и только в 1950 г. была предложена структурная формула, которая объясняла все его превращения. Эта структура была подтверждена в 1954 г. Вудвордом (США) с помощью синтеза (1).

 

Качественный анализ.

Фармакопейный качественный химический анализ сырья чилибухи заключается в открытии стрихнина и бруцина.

Хлороформное извлечение порошка семян фильтруют через фильтр с безводным сульфатом натрия, делят на 2 части и упаривают на водяной бане досуха. К одной части сухого остатка прибавляют раствор бихромата калия и осторожно по стенкам чашки – концентрированную серную кислоту. При покачивании чашки появляются красно-фиолетовое окрашивание – стрихнин. К другой части сухого остатка прибавляют концентрированную азотную кислоту, появляется оранжево-красное окрашивание – бруцин. Также можно проводить анализ на срезах семян чилибухи: при смачивании обезжиренного среза каплей концентрированной серной кислоты со следами ванадата аммония содержимое клеток тотчас же окрашивается в фиолетовый цвет. При смачивании среза каплей дымящей азотной кислоты, содержимое клеток окрашивается в оранжево-желтый цвет (15).

Нефармакопейные реакции на стрихнин.

С нитритом натрия и серной кислотой стрихнин дает грязно-желтое окрашивание, которое после добавления спиртового раствора едкого кали переходит в оранжево-красное; при добавлении же водного раствора едкого кали сначала появляется коричневато-зеленая окраска, переходящая в красно-коричневую.

В концентрированной азотной кислоте стрихнин дает желтый раствор, остаток после выпаривания при прибавлении аммиака окрашивается в оранжево-желтый цвет, такая же окраска получается и от прибавления водного или спиртового раствора едкого кали. Водный раствор вызывает оранжевую окраску, которая изменяется потом в желтую, зеленую, красноватую и, наконец, исчезает (12).

Стрихнин в чистых препаратах дает характерные кристаллические осадки со многими реагентами. Наиболее пригодными для микрохимического откры­тия стрихнина являются: 1) пикриновая кислота, 2) реак­тив Майера, 3) бихромат калия, 4) железосинеродистый калий, 5) реактив Беттендорфа, 6) пикролоновая кислота, 7) четыреххлористый свинец и некоторые другие реак­тивы (2).

С 1%-ным раствором пикриновой кислоты раствор азотнокислого стрихнина, подкисленный уксусной кисло­той, дает мелкокристаллический осадок в виде круглых зернышек, которые после недолгого стояния срастаются в перьевидные агрегаты. Эта реакция очень чувствительна.

При смешении на предметном стекле 0,1%-ного раствора азотнокислого стрихнина, подкислен­ного разведенной соляной кислотой, с раствором К4[Fe(CN)6] (1:10) выпадает обильный кристалличе­ский бледно-желтый осадок, часть кристаллов срастается в виде крыльев или их обломков (12).

Насыщенный спиртовой раствор пикролоновой кисло­ты с 0,1%-ным раствором азотнокислого стрихнина дает быстро кристаллизующийся осадок в виде веточек.

Четыреххлористый свинец с подкисленным соляной кислотой раствором азотнокислого стрихнина дает бы­стро кристаллизующийся осадок. Быстрота образования кристаллов зависит от концентрации раствора алкалои­дов; 0,5% раствор азотнокислого стрихнина образу­ет с этим реактивом в большинстве случаев кристаллы перьевидных форм, а 0,1 и 0,05%-ные растворы алкалои­да – кристаллы призматической формы или в виде пла­стинок. При действии этих реактивов на настойку чилибухи получаются аморфные осадки, за исключением реакции с К4[Fe(CN)б], с которым образуется кристаллический оса­док в виде чешуек (1).

При взаимодействии на предметном стекле капли азотнокислого стрихнина с каплей свежеприготовленного 1%-ного раствора соли Рейнеке образуется аморфный осадок, который вскоре переходит в кристаллический в виде дендритов и игл.

При добавлении к капле азотнокислого стрихнина кап­ли 10%-ного раствора платинохлористоводородной кис­лоты, через 5 – 10 мин выпадают бесцветные призмы и кристаллы, напоминающие форму конвертов (12).

Нефармакопейные реакции на бруцин.

Чистый препа­рат бруцина с концентрированной азотной кислотой дает кроваво-красную окраску, которая постепенно переходит в красно-желтую и желтую. При прибавлении к желто­му раствору раствора хлористого олова (SnCl2) или ги­посульфита (Nа2S2O3) появляется фиолетовое окрашива­ние (12).

Бруцин, как и стрихнин, дает ряд характерных микрокристалличесикх реакций.

При добавлении к капле азотнокислого бруцина кап­ли 10%-ного раствора платинохлористоводородной кис­лоты, через 5 – 10 мин выпадают кристаллы игольчатой формы.

От прибавления капли насыщенного раствора пикро­лоновой кислоты к капле раствора хлористоводородного бруцина сначала образуется бледно-желтый аморфный, а затем, при стоянии, кристаллический осадок в виде звезд и пучков из мелких пластинок (2).

При добавлении к капле солянокислого бруцина капли 1%-ного свежеприготовленного раствора антраниловой кислоты, выпадают интенсивно желтые пластинки и призмы с дву­сторонними концевыми гранями.

При взаимодействии на предметном стекле капли раствора соля­нокислого бруцина с каплей 1%-ного раствора палладиевохлористоводородной кислоты образуются кристаллы в виде игл и пластинок желтого цвета (12).

 

Количественный анализ.

Количественное определение суммы стрихнина и бру­цина в сухих препаратах. Навеску (1 – 7 г) порошка обезжиривают петролейным эфиром, помещают в склян­ку емкостью 200 мл с притертой пробкой и заливают 50 мл эфира, 25 мл хлороформа и 7,5 мл раствора амми­ака. Полученную смесь в течение часа часто и сильно встряхивают. 50 мл отстоявшегося эфирохлороформного слоя фильтруют через сухой хорошо прикрытый фильтр диаметром 10 см в коническую колбу емкостью 150 мл. Фильтр промывают два раза эфирохлороформной смесью, присоединяя фильтрат к основному объему жид­кости. Растворитель отгоняют досуха. Остаток растворя­ют в 5 мл спирта, прибавляют 15 мл воды, 3 капли мети­лового красного и титруют 0,1 н. раствором соляной кис­лоты до розового окрашивания.

1 мл 0,1 н. раствора соляной кислоты, израсходован­ной на титрование, соответствует 0,0364 г смеси равных частей стрихнина и бруцина (15).

Определение стрихнина в препаратах (порошке).

Около 0,3 г препарата (точная навеска) растворяют при нагревании в нейтрализованной по фенолфталеину смеси, состоящей из 30 мл спирта и 15 мл хлороформа, и при по­стоянном взбалтывании титруют 0,1 н. раствором едкого натра (индикатор фенолфталеин).

1 мл 0,1 н. раствора едкого натра, израсходованного на титрование, соответствует 0.03974 г стрихнина нитрата (12).

Определение стрихнина нитрата в ампулах. К 10 мл препарата прибавляют 1 каплю раствора метилового красного и по каплям 0,02 н. раствора едкого натра до перехода красной окраски в желтую.

К нейтрализованному раствору добавляют 10 мл спирта, нейтрализованного по фенолфталеину, и титруют 0,02 н. раствором едкого натра (индикатор 5 капель фе­нолфталеина). 1 мл ''02 н. раствора едкого натра соот­ветствует 0,007948 г стрихнина нитрата (12).

Колориметрический метод определения малых доз стрихнина нитрата (по Соболевой). 1 мл раствора, содер­жащего 0, 001 г соли алкалоида, доводят водой до   4 мл, прибавляют 4 мл соляной кислоты (удельный вес 1,12) и 1 – 2 г цинковой пыли. После окончания бурной реак­ции смесь нагревают на водяной бане до прекращения выделения водорода и оставляют до полного охлажде­ния, после чего быстро фильтруют через смоченную во­дой вату в мерную колбу на 50 мл, в которую предварительно внесено 2 мл соляной кислоты (удельный вес 1,12). Вату промывают водой, к фильтрату прибавляют 1 каплю 10%-ного раствора нитрита натрия, доводят во­дой до метки и взбалтывают.

Берут 5 мл этого раствора, доводят водой до 20 мл и колориметрируют.

Стандартом может быть либо раствор стрихнина нитра­та, обработанного указанным образом, либо смесь из 2,2 мл раствора хлорида кобальта (0,0059436 г хлорида кобальта в 1 мл), 0,8 мл раствора бихромата калия (с со­держанием 0,002 г в 1 мл) и 17 мл воды. Такой раствор соответствует окраске 0,01 г стрихнина нитрата, разбав­ленного 1:200000 (12).

Хроматографическое разделение стрихнина и бруцина на бумаге не представляет затруднений. Бруцин, дигидробруцин и стрихнин распределяют в системе изобутанол – соляная кислота – вода (50:7.5:13.5) (12).

 

Числовые показатели.

Содержание суммы алкалоидов должно быть не менее 2,5%; золы общей не более 3,5% (15).

 

Хранение.

По списку А. В хорошо укупоренных банках, на складах – в ящиках и плотных мешках (15).

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...