Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

За марку бетона по морозостойкости




Основные технические требования к бетонам. Классы бетона по прочности. Марки по морозостойкости. Марки по водонепроницаемости.

Марки и классы бетона

При проектировании бетонных и железобетонных конструкций назначают требуемые характеристики бетона: класс (марку) прочности, марки морозостойкости и водонепроницаемости.
За проектную марку бетона по прочности на сжатие принимают сопротивление осевому сжатию (кгс/см2) эталонных образцов-кубов.
За проектную марку бетона по прочности на осевое растяжение принимают сопротивление осевому растяжению (кгс/см2) контрольных образцов. Эта марка назначается тогда, когда она имеет главенствующее значение.
Проектная марка бетона по морозостойкости характеризуется числом циклов попеременного замораживания и оттаивания, которое выдерживают образцы в условиях стандартного испытания. Назначается для бетона, подвергающегося многократному воздействию отрицательных температур.
Проектная марка бетона по водонепроницаемости характеризуется односторонним гидростатическим давлением (кгс/см2), при котором образцы бетона не пропускают воду в условиях стандартного испытания. Назначается для бетона, к которому предъявляются требования по плотности и водонепроницаемости.
Проектную марку бетона по прочности на сжатие контролируют путем испытания стандартных бетонных образцов: для монолитных конструкций в возрасте 28 суток, для сборных конструкций - в сроки, установленные для данного вида изделий стандартом или техническими условиями.
Проектную марку бетона монолитных конструкций разрешается устанавливать при специальном обосновании в возрасте 90 или 180 суток в зависимости от сроков загружения, что позволяет экономить цемент.
Прочность бетона определяют путем испытания образцов, которые изготовляют сериями; серия, как правило, состоит из трех образцов.
Предел прочности при растяжении возрастает при повышении марки бетона по прочности при сжатии, однако увеличение сопротивления растяжению замедляется в области высокопрочных бетонов. Поэтому прочность бетона при растяжении составляет 1/10-1/17 предела прочности при сжатии, а предел прочности при изгибе - 1/6-1/10.

Однородность прочности и класс бетона

Бетон должен быть однородным - это важнейшее техническое и экономическое требование. Для оценки однородности бетона данной марки используют результаты контрольных испытаний бетонных образцов за определенный период времени, имеется в виду, что стандартные образцы твердели в одинаковых условиях одно и то же время. Прочность бетонных образцов будет колебаться, отклоняясь от среднего значения в большую и меньшую стороны. На прочности сказываются колебания в качестве цемента и заполнителей, точность дозирования составляющих, тщательность приготовления бетонной смеси и другие факторы.
Для повышения однородности бетона необходимо применение цемента и заполнителей гарантированного качества, повышение уровня технологической дисциплины, автоматизация производства.
Следовательно, для нормирования прочности необходимо использовать стандартную характеристику, которая гарантировала бы получение бетона заданной прочности с учетом возможных ее колебаний. Такой характеристикой является класс бетона.
Класс бетона - это числовая характеристика какого-либо его свойства, принимаемая с гарантированной обеспеченностью 0,95. Это значит, что установленное классом свойство обеспечивается не менее чем в 95 случаях из 100 и лишь в 5-ти случаях можно ожидать его не выполненным.
Бетоны подразделяются на классы: В1; В1,5; В2; В2,5; В3,5; В5; В7,5; В10; В12,5; В15; В20; В25; В30; В40; В45; В50; В55; В60.

 

Соотношение между классом и марками бетона по прочности при нормативном коэффициенте вариации v = 13,5%

Класс бетона Средняя прочность данного класса, кгс/кв.см Ближайшая марка бетона
В3,5 В5 В7,5 В10 В12,5 В15 В20 В25 В30 В35 В40 В45 В50 В55 В60 46 65 98 131 164 196 262 327 393 458 524 589 655 720 786 М50 М75 М100 М150 М150 М200 М250 М350 М400 М450 М550 М600 М600 М700 М800


Твердение бетона

Прочность бетона нарастает в результате физико-химических процессов взаимодействия цемента с водой, которые нормально проходят в теплых и влажных условиях. Взаимодействие цемента с водой прекращается, если бетон высыхает или замерзает. Раннее высыхание и замерзание бетона непоправимо ухудшает его строение и свойства.
Бетон нуждается в уходе, создающем нормальные условия твердения, в особенности в начальный период после укладки (до 15-28 суток). В теплое время года влагу в бетоне сохраняют путем поливки и укрытия. На поверхность свежеуложенного бетона наносят битумную эмульсию или его укрывают полиэтиленовыми и другими пленками.
Характер нарастания прочности бетонов, изготовленных на портландцементе и твердевших в нормальных условиях (во влажном воздухе с температурой 18-22°С). Приближенно можно считать, что прочность бетона со временем увеличивается примерно по логарифмическому закону: Rn = R28(lgn / lg28), где Rn - прочность бетона в возрасте n сут (не менее трех суток); R28 - марка бетона; n - число дней твердения бетона. Эту формулу используют при ориентировочных расчетах времени распалубки.
Более точно прочность бетона в промежуточные сроки твердения определяется по опытной кривой нарастания прочности бетона, которая может быть построена по результатам испытания образцов 3, 7, 28, 90 - суточного возраста. Бетон при нормальных условиях твердения имеет низкую начальную прочность и только через 7-14 сут приобретает 60-80% марочной прочности

За марку бетона по морозостойкости

принимают наибольшее число циклов попеременного замораживания и оттаивания, которое при испытании выдерживают образцы установленных размеров без снижения прочности на сжатие более 5% по сравнению с прочностью образцов, испытанных в эквивалентном возрасте, а для дорожного бетона, кроме того, без потери массы более 5%. Установлены марки по морозостойкости: F50, F75, F100, F150, F200, F300, F400, F500.

По водонепроницаемости

бетон делят на марки W2, W4, W6, W8 и W12, причем марка обозначает давление воды (кгс/см2), при котором образец-цилиндр высотой 15 см не пропускает воду в условиях стандартного испытания.

2. Цементы и требования к ним. Рекомендуемые марки. Рекомендации по применению. Минимальный и максимальный расход.
Цементы и требования к ним

Выбор вида цемента и его марки производится в зависимости от условий работы конструкций и требований к бетону по прочности. Марки цемента определяются по пределу прочности на растяжение при изгибе и сжатии образцов размером 4x4x16 см из цементного раствора, изготовленных, твердевших и испытанных в соответствии с ГОСТ 310.1-76.

Основными видами цемента являются портландцемент, портландцемент с минеральными добавками и шлакопортландцемент.

Для изготовления сборных железобетонных конструкций преимущественно следует применять быстротвердеющий портландцемент и в ряде случаев шлакопортландцемент марок 400 и 500, который эффективно твердеет при тепловой обработке. Применение быстротвердеющего портландцемента наиболее эффективно в тех случаях, когда нарастание прочности бетона в ранние сроки твердения может быть использовано для ускорения процессов производства сборного железобетона.

Применение цементов марок 400, 500 для бетонов той же марки, что и марка цемента, или для бетонов более высоких марок допустимо при выполнении технологических мероприятий (использование жестких смесей, интенсивное вибрирование, в том числе с пригрузом, введение суперпластификаторов и др.), позволяющих достичь требуемой марки без значительного (более 10%) увеличения расхода цемента.

Если к бетону предъявляют требование сульфатостойкости, для его изготовления применяют сульфатостойкие цементы (ГОСТ 22266-76). Нормы допустимого содержания сульфатов в воде-среде, при которых допускается применение различных видов цемента, принимают в соответствии с требованиями главы СНиП II-28-73. Сульфатостойские цементы должны быть изготовлены из цементного клинкера нормированного минералогического состава.

Для регулирования сроков схватывания в портландцементы и шлакопортландцементы вводят гипс. Допускается введение до 1% добавок – интенсификаторов помола. Пластифицирующие или гидрофобизирующие добавки вводят, по согласованию с потребителем, в количестве до 0,3% массы цемента. В сульфатостойких портландцементах не допускается использование доменного шлака или других активных минеральных добавок осадочного происхождения.


3. Мелкий заполнитель. Фракционный состав. Виды. Влияние на свойства бетонной смеси и бетона.

Заполнитель для бетона мелкий — рыхлая смесь зерен материала природного или искусственного происхождения, размером до 5 мм. В качестве мелкого заполнителя в бетоне используется природный песок.

В соответствии с ГОСТ 8736—93 природный песок — неорганический сыпучий материал с крупностью зерен до 5 мм, образовавшийся в результате естественного разрушения скальных горных пород и получаемый при разработке песчаных и песчано-гравийных месторождений без использования или с использованием специального обогатительного оборудования.

По минералогическому составу различают кварцевые, полево-шпатные, карбонатные и другие пески. Как правило, наилучшие по качеству пески — кварцевые, и они чаще используются, однако при производстве безобжиговых материалов (бетонов, асфальтобетонов) их заменяют и другими природными песками.

Среди природных песков встречаются горные (овражные), речные, морские, барханные, дюнные и другие разновидности. Каждый из них имеет положительные и отрицательные свойства, проявляющиеся при использовании их в качестве мелких заполнителей: горные пески содержат повышенное количество глинистых и органических примесей; морские кроме кварцевых зерен могут содержать обломки раковин, снижающие прочность некоторых конгломератов (цементных бетонов и др.); речные и морские имеют излишне отполированную поверхность, не обеспечивающую достаточного сцепления их с вяжущим веществом; дюнные и барханные пески сложены весьма мелкими частицами, не отвечающими требованиям стандарта. При тщательной проверке качества песков предпочтение отдается той разновидности, качество которой отвечает требованиям стандарта при минимальной стоимости заполнителя.

В зависимости от значения нормируемых показателей качества (зернового состава, содержания пылевидных и глинистых частиц) песок подразделяется на два класса:

I класс — очень крупный (песок из отсевов дробления), повы

шенной крупности, крупный, средний и мелкий;

II класс — очень крупный (песок из отсевов дробления), повы

шенной крупности, крупный, средний, мелкий, очень мелкий, тон

кий и очень тонкий.

Зерновой состав песка определяют на стандартном наборе сит с размерами ячеек: Д5; 2,5; 1,25; 0,63; 0,315 и 0,16 мм. Навеску сухого песка просеивают через набор сит и определяют сначала частные (%) остатки (а2 5; я; 25; а0 63 и т.д.), а затем полные (А2 5; А} 25; А0 6} и т.д.) остатки на каждом сите. Полный остаток на каждом сите равен сумме частных остатков на этом сите и всех ситах большего размера.

В строительстве часто используют фракционированный песок, разделенный на крупную (5...1,25 мм) и мелкую (1,25...0,16 мм) фракции. Фракционирование применяют для повышения однородности зернового состава песка. Зерновой состав песка для бетонов нормируется ГОСТ 10268 — 80 по остаткам на всех ситах (1).

При правильно назначенном зерновом составе пустотность песка не превышает 38%. Всегда учитывается содержание воды в песке, так как влажность существенно влияет на его свойства. Если для других строительных материалов увлажнение, как правило, приводит к увеличению их плотности, то для песка ситуация обстоит иначе. Самый большой объем песок занимает при 4...7% влажности (по массе). Это связано с тем, что влажный песок не столь сыпуч, как сухой. Так как каждая песчинка покрывается тонким слоем воды, насыпная плотность песка уменьшается и общий объем песка возрастает (2). Пленочная вода обладает свойствами клея: песчинки слипаются и агрегируются, занимая при укладке их в какую-либо емкость значительно больший объем, чем занимал бы сухой песок. При дальнейшем увеличении влажности (порядка до 20%) вода входит в межзерновые пустоты песка, вытесняя воздух, насыпная плотность песка снова увеличивается.

4. Крупный заполнитель. Фракционный состав. Виды. Влияние свойства бетонной смеси и бетона.

  Крупными заполнителями в бетоне служат гравий, щебень, а также щебень из гравия. Гравий представляет собой осадочную горную породу в виде скопления зерен размерами 5...70 мм округлой, окатанной формы и с гладкой поверхностью. В гравий входит некоторое количество песка. При содержании песка 25...40% материал называют песчано-гравийной смесью. Щебень получают дроблением массивных плотных горных пород на куски размерами 5...70 мм. Зерна щебня — угловатой формы и с более развитой, чем у гравия, шероховатой поверхностью. Благодаря этому сцепление с цементным камнем у щебня выше, чем у гравия. Для высокопрочного бетона предпочтительно применять щебень, для бетонов средней прочности (15...30 МПа) — дешевый местный гравий, а не привозной щебень. Для характеристики зернового состава крупного заполнителя необходимо знать его наибольшую и наименьшую крупность. Наибольшая крупность заполнителя D соответствует размеру отверстий стандартного сита, на котором полный остаток еще не превышает 10% по массе. Наименьшая крупность d определяется размером отверстий первого из сит, полный остаток на котором превышает 95 %, т.е. через него проходит не более 5 % просеиваемой пробы. Наименьшая крупность обычно равна 5 мм. Наибольшая крупность заполнителя должна соответствовать размерам бетонируемой конструкции и расстоянию между стержнями арматуры. Чтобы заполнитель при бетонировании равномерно, без зависаний, распределялся в объеме конструкции, его наибольшую крупность назначают с учетом вида и размеров конструкции и густоты армирования.

5. Химические добавки. Цели применения. Классификация. Свойства.

Применение добавок является наиболее эффективным способом, повышающим качество бетонов, не требующим больших капитальных затрат. Грамотное применение целевых комплексных добавок позволяет решить любые проблемы, связанные с получением бетонов с заданными свойствами. Высокая прочность, низкая проницаемость, повышенная долговечность и морозостойкость могут быть достигнуты с применением высокоподвижных бетонных смесей, содержащих современные добавки. Все добавки можно разделить на шесть групп. Суперпластификаторы – позволяют повысить подвижность бетонной смеси, или увеличить прочность, плотность и водонепроницаемость бетона, или снизить расход цемента при обеспечении требуемой прочности бетона. Ускорители набора прочности – увеличивают скорость набора прочности в ранние сроки твердения (1-3 суток), повышают марочную прочность бетона. Добавки, регулирующие сохраняемость подвижности бетонной смеси, – востребованы в жаркое время года или при необходимости длительной перевозки бетонной смеси. Добавки с противоморозным эффектом – обеспечивают проведение бетонных работ в зимнее время при температурах до минус 15 о С и даже до минус 25 о С. Модификаторы бетона – бетоны с этими добавками имеют класс по прочности до В80 при применении цементов марки 500, отличаются пониженной проницаемостью, морозостойкостью, коррозионной стойкостью и долговечностью, при этом бетонная смесь может иметь высокую подвижность. Добавки для самоуплотняющихся бетонов – помогают решить проблему бетонирования тонкостенных, густоармированных конструкций. Комплексные добавки – объединяют в себе несколько видов воздействия на бетонную смесь. Кроме того, комплексные добавки избавляют производителей бетона от поисков нескольких разных компонентов для получения нужных свойств. Ведь эти компоненты должны еще и мирно «уживаться» в одной смеси, не вступать между собой в какие-то нежелательные реакции.
Большинство добавок, производимых за рубежом, – комплексного действия. Однако, результаты многочисленных исследований, проведенных специальными лабораториями, показали, как хороша ни была бы добавка, как хорошо она не рекламировалась, как хорошо она себя не зарекомендовала на Западе, это не значит, что и у нас, на наших инертных материалах и цементе, она покажет хорошие результаты. Надо иметь в виду, что там, за рубежом, очень высокое качество цемента и остальных компонентов бетона. Там, в частности, огромное внимание уделяется зерновому составу щебня и даже песка. Например, в Германии фракционированный песок на бетонном производстве разделен на отдельные кучи, и каждый потребитель получает бетон с таким зерновым составом, который он заказывал. Значит, и добавки в таком бетоне будут работать на все 100%. Опыт производственников показал, что импортные добавки в ряде случаев плохо работают как с отечественными цементами, так и в сочетании с отечественными добавками. Например, некоторые шведские суперпластификаторы несовместимы с теми отечественными, которые обеспечивают морозостойкость бетона. То есть, выбрав одну добавку иностранной фирмы, производственники, как правило, вынуждены использовать и другие добавки того же производителя. А это не выгодно с экономической точки зрения, потому что есть аналоги отечественного производства, гораздо более дешевые. В нашей стране номенклатура модификаторов, предложенных к применению, весьма обширна (количество модификаторов, только входящих в перечень строительного каталога СК-4 «Химические добавки для бетонов и строительных растворов», превышает 80 наименований). Для регулирования свойств бетона, бетонной смеси и экономии цемента применяют различные добавки. Их подразделяют на два вида: химические добавки, вводимые в бетон в небольшом количестве (0,1- 2% от массы цемента) и изменяющие в нужном направлении свойства бетонной смеси и бетона, и тонкомолотые добавки (5-20% и более), использующиеся для экономии цемента, получения плотного бетона при малых расходах цемента и повышения стойкости бетона. Применение химических добавок является одним из наиболее универсальных, доступных и гибких способов управления технологией бетона и регулирования его свойств. Если ранее наиболее широко в строительстве использовались в виде добавок отдельные химические продукты и модифицированные отходы промышленности, то в настоящее время преобладают добавки, специально приготовленные для бетона (суперпластификаторы, органо-минеральные и другие). Планы развития строительной индустрии предусматривают значительное расширение производства бетонных смесей с использованием эффективных добавок, применение новых видов добавок. Химические добавки классифицируют по основному эффекту действия: 1) регулирующие свойства бетонных смесей: - пластифицирующие добавки, увеличивающие подвижность бетонной смеси; - стабилизирующие добавки, предупреждающие расслоение бетонной смеси; - водоудерживающие, уменьшающие водоотделение; 2) добавки регулирующие схватывание бетонных смесей и твердение бетона: - добавки, ускоряющие или замедляющие схватывание, ускоряющие твердение, обеспечивающие твердение при отрицательных температурах (противоморозные); 3) регулирующие плотность и пористость бетонной смеси и бетона: воздухововлекающие, газообразующие, пенообразующие, уплотняющие (воздухоудаляющие и кольматирующие поры бетона); 4) добавки - регуляторы деформаций бетона, расширяющие добавки; 5) повышающие защитные свойства бетона стали, ингибиторы коррозии стали; 6) добавки - стабилизаторы, повышающие стойкость бетонных смесей против расслоения, снижающие водоотделение; 7) добавки придающие бетону специальные свойства: - гидрофобизирующие добавки, уменьшающие смачивание бетона; - антикоррозионные добавки, повышающие стойкость в агрессивных средах, красящие, повышающие бактерицидные и инсектицидные свойства, электроизоляционные, электропроводящие, противорадиационные. Некоторые добавки обладают полифункциональным действием, например, пластифицирующие и воздухововлекающие, газообразующие и пластифицирующие и др. В этом случае добавку классифицируют по наиболее выраженному эффекту действия.
Большое значение имеет эффективность воздействия добавки на бетонную смесь или бетон, которую обычно оценивают по величине максимального технического эффекта, достигаемого при введении данной добавки. Добавки одного класса могут заметно различаться по эффективности. В этом случае применяют дополнительную классификацию добавок по группам, обладающим определенной эффективностью. Например, добавки пластификаторы делят на четыре группы или категории по эффективности (табл. 1.1). Таблица 1.1 Классификация пластификаторов
Категория Группа Эффективность действия
Изменение осадки, см Уменьшение водопотребности равноподвижных смесей, %
I Суперпластификатор От 2..3 до 20 Не менее 20
II Сильный пластификатор От 2..3 до 4...20  
III Средний пластификатор От 2...3 до 8.. 14  
IV Слабый пластификатор От 2...3 до 6..8 Менее 5

Пластификаторы бетонных смесей начали широко применяться в 40-50-х годах, и сегодня они занимают ведущее место среди химических добавок, применяемых в технологии бетона. В качестве пластифицирующих добавок широко используют поверхностно-активные вещества (ПАВ), нередко получаемые из вторичных продуктов и отходов химической промышленности. ПАВ делят на две группы:

I группа - пластифицирующие добавки гидрофильного типа, способствующие диспергированию коллоидной системы цементного теста и тем самым улучшающие его текучесть;

II группа - гидрофобизирующие добавки, вовлекающие в бетонную смесь мельчайшие пузырьки воздуха. Молекулы поверхностно-активных гидрофобных добавок, адсорбируясь на поверхности раздела воздуха - вода, понижают поностное натяжение воды и стабилизируют мельчайшие пузырьки в цементном тесте. Добавки II группы, основным назначением которых является регулирование структуры и повышение стойкости бетона, обладают при этом заметным пластифицирующим эффектом.

Из добавок I группы широко известна сульфитно-дрожже-бражка (СДБ). Эта добавка представляет собой кальциевые соли лигносульфоновых кислот. Получают ее в виде жидкости из сульфитных щелоков, образующихся при переработке целлюлозы. Выпускают также пластификатор адипиновой щелочной (ПАЩ-1), упаренную последрожжевую барду (УПБ), пластификатор ВРП-1 и др.

К добавкам II группы относят: смолу нейтрализованную воздухововлекающую (СНВ); натриевую соль абиетиновой кислоты, получаемую в виде порошка или жидкости путем омыления канифоли едким натром; омыленный древесный пек (препарат ЦНПИПС-1) - пасту, получаемую нейтрализацией едким натром жидких кислот древесного пека; смолу древесную омыленную (СДО), синтетическую поверхностно-активную добавку (СПД), получаемую из отходов нефтепереработки, сульфанол (С), (ОП) и др.

В обычных бетонах в качестве пластификатора широко используют СДБ. СДБ повышает подвижность бетонной смеси, ее однородность, текучесть при перекачивании насосом, способствует сохранению удобоукладываемости смеси во времени, позволяет за счет уменьшения расхода воды сократить на 8-12% расход цемента, либо при неизменном расходе цемента понизить водоцементное отношение и несколько повысить прочность бетона, его водонепроницаемость и морозостойкость. СДБ несколько замедляет твердение бетона в раннем возрасте, поэтому при производстве сборного железобетона ее применяют в сочетании с добавками - ускорителями твердения цемента. Добавка уменьшает тепловыделение цемента в первые дни твердения, что облегчает возведение массивных железобетонных сооружений; СДБ в основном воздействует на цементное тесто, поэтому наиболее эффективно ее применение в бетонах с достаточно высоким расходом цемента.

Воздухововлекающие добавки используют главным образом для повышения морозостойкости бетонов и растворов. Эти добавки несколько понижают прочность бетона (1% вовлеченного воздуха снижает прочность бетона на сжатие на 3%), поэтому не следует в бетонную смесь с целью ее пластификации вводить большое количество воздухововлекающей добавки. Содержание вовлеченного воздуха составляет обычно 4-5%. В этом случае прочность бетона практически не снижается, так как отрицательное влияние вовлеченного воздуха нейтрализуется повышением прочности цементного камня вследствие уменьшения водоцементного отношения за счет пластифицирующего эффекта добавки. Воздухововлекающая добавка гидрофобизирует поры и капилляры бетона, а воздушные пузырьки служат резервным объемом для замерзания воды без возникновения больших внутренних напряжений. В результате значительно повышаются водонепроницаемость и морозостойкость бетонов. Воздухововлекающие добавки более эффективны в бетонах с малым расходом цемента. В качестве газообразующей добавки широко используют алюминиевую пудру (ПАК) и ГКЖ-94. Наоборот, для уплотнения структуры бетона добавляют нитрат кальция (НК), хлорид и сульфат железа (ХЖ и СЖ), сульфат алюминия (СА), диэтиленгликолиевую ДЭГ-1 или триэтиленгликолиевую ТЭГ-1 смолы. Для замедления схватывания применяют кормовую сахарную патоку (КП), нитрилотриметиленфосфоновую кислоту (НТО) и маточные растворы ее производства, а также добавки СДБ, ГКЖ-10 и ГКЖ-94 в повышенных дозировках. Для гидрофобизации бетона, повышения его стойкости в агрессивной среде и долговечности применяют гидрофобно-пластифицирующие кремнийорганические жидкости: метилсиликонат натрия ГКЖ-11, этилсиликонат натрия ГКЖ-10, этилгидросилоксановую жидкость ГКЖ-94. Для уплотнения структуры бетона используют FеСl3, в качестве ингибиторов коррозии - нитрит натрия, бихромат калия, для улучшения противорадиационных свойств - соли тяжелых металлов, для повышения электропроводности - кокс, для придания бактерицидных свойств - ОСС, для стабилизации бетонной смеси - метил целлюлозу и др. Перечисленные добавки не исчерпывают всего многообразия имеющихся сегодня в арсенале технолога модификаторов бетона. Умелое пользование ими обеспечивает значительное повышение качества бетона и экономию ресурсов при его изготовлении. Химические добавки поставляются в виде водных растворов, порошков и эмульсий. Большинство добавок растворимы в воде, и их вводят в бетоносмеситель в виде предварительно приготовленного раствора. Некоторые добавки вводят в виде эмульсии (ГКЖ-94) или в виде взвесей в воде (ПАК). Оптимальная дозировка добавки зависит от вида цемента, состава бетонной смеси, технологии изготовления конструкции. Обычно применяют (% от массы цемента): пластифицирующих добавок - 0,1-0,3; суперпластификаторов - 0,5-1; воздухововлекающих добавок - 0,01-0,05; ускорителей твердения – 1-2. На практике оптимальную дозировку добавки определяют опытным путем. Для получения эффекта полифункционального действия применяют комплексные добавки, включающие несколько компонентов, например, добавки, одновременно пластифицирующие бетонную смесь и ускоряющие твердение бетона, и др. Разработано большое количество разнообразных комплексных добавок, позволяющих осуществлять действенное управление свойствами и технологией бетона. Комплексные добавки условно можно разделить на пять групп: смеси поверхностноактивных веществ (I), смеси поверхностноактивных веществ и электролитов (II), смеси электролитов (III), комплексные добавки на основе суперпластификаторов (IV), сложные многокомпонентные комплексные добавки (V).
В комплексных добавках I группы наиболее часто применяют сочетание пластифицирующих компонентов диспергирующего действия и гидрофобизирующих воздухововлекающих (СДБ+СНВ, ПАЩ+СПД) или гидрофобизирующих газообразующих компонентов (СДБ+ГКЖ-94). Первые компоненты хорошо пластифицируют жирные бетонные смеси с высоким расходом цемента, вторые, наоборот, тощие бетонные смеси. Вследствие различия в сорбционной способности к минералам цементного клинкера добавки показывают разную степень эффективности при использовании различных по минералогическому составу цементов. СДБ оказываются более эффективными при применении аллюмиатных цементов, а гидрофобные добавки - при применении цементов с повышенным содержанием силикатов кальция. В комплексных гидрофобно-пластифицирующих добавках отдельные компоненты дополняют друг друга, делая добавки более универсальными. Хорошо пластифицируя бетонную смесь, комплексные добавки I группы одновременно изменяют в нужном направлении структуру бетона и ее свойства. В результате в 2-5 раз увеличивается морозостойкость бетона, на 1-2 марки - его водонепроницаемость, повышается его коррозионная стойкость. Заданная подвижность бетонной смеси сохраняется в течение 2-3 ч, что особенно важно при транспортировании смеси на большие расстояния и при бетонировании в условиях сухого жаркого климата. В ряде случаев на 5-10% сокращается расход цемента для получения бетона с заданными техническими показателями. Сочетание ПАВ с различным механизмом воздействия на бетонную смесь может способствовать повышению общего пластифицирующего эффекта. Например, введение в раствор СДБ кубовых остатков синтетических жирных кислот (КОСЖК) или кубовых остатков высших жирных спиртов (КОВЖС) способствует снижению воздухововлечения и тем самым позволяет увеличить дозировку СДБ и соответственно подвижность бетонной смеси. Интересным новым направлением является сочетание пластифицирующего и стабилизирующего компонентов, например СДБ и полиокситилена (ПОЭ) или СДБ и метилцеллюлозы (МЦ). Эти добавки позволяют получать бетонные смеси с повышенной связностью, что способствует транспортированию бетонной смеси по лоткам и трубопроводам, изготовлению изделий методом экструзии, обеспечивают нерасслаиваемость легких бетонных смесей. Вместе с тем комплексные добавки I группы несколько замедляют гидратацию цемента, что необходимо учитывать при изготовлении конструкций. Бетон с такими добавками следует выдерживать не менее 2 ч до тепловой обработки, скорость подъема температуры не должна превышать 15-20oС/ч, а общая продолжительность тепловлажностной обработки должна составлять не менее 13 ч для бетонов на портландцементах и не менее 14 ч для бетонов на шлако и пуццолановых цементах.
Комплексные добавки II группы, включающие ПАВ и электролиты, расширяют возможность модификации бетона и бетонной смеси. Введением электролитов регулируется темп твердения и улучшаются структурно-механические свойства бетона, например, повышается его плотность, а ПАВ позволяют регулировать подвижность бетонной смеси, ее воздухосодержание, придают бетонам некоторые специальные свойства (гидрофобность и др.). В технологии бетона используют добавки СДБ-СН, СДБ+ННХК, СДБ+ГКЖ-94+СН, ГКЖ-10+НК и др. Сочетание СДБ с СН или ННХК обеспечивает достаточный темп твердения бетона и положительно влияет на его плотность и непроницаемость, позволяя одновременно экономить 8-15% цемента за счет снижения водопотребности бетонной смеси. При сохранении его заданной подвижности сочетание с электролитами кремнийорганических соединений обеспечивает высокую морозостойкость и коррозионную стойкость бетона. Вместе с тем, проектируя комплексные добавки II группы, необходимо учитывать, что некоторые компоненты могут обладать несовместимостью. Например, некоторые ПАВ образуют с кальциевыми и алюминиевыми солями труднорастворимые соединения; электролиты в ряде случаев снижают эффективность воздухововлекающих добавок и т. д. Иногда, чтобы уменьшить отрицательное влияние несовместимости отдельных компонентов комплексной добавки, применяют их раздельное введение в бетонную смесь, что усложняет технологию и приводит к дополнительным затратам. В комплексных добавках III группы сочетание электролитов с разным механизмом воздействия на бетонную смесь и бетон позволяет устранить недостатки некоторых однокомпонентных добавок и добиться полифункционального эффекта. Например, сочетание ускорителей твердения и ингибиторов (ННХК, ХК+НН, ННК) уменьшает опасность коррозии арматуры в железобетонных конструкциях, а сочетание поташа и алюмината натрия регулирует сроки схватывания бетонной смеси. Наиболее широко комплексные добавки III группы используют при зимнем бетонировании.
Особое развитие комплексные добавки получили с созданием и внедрением в промышленность суперпластификаторов (IV группа). Многие суперпластификаторы по существу представляют собой комплексные добавки на основе высокоэффективных поверхностно-активных веществ. Например, суперпластификатор С-3 наряду с основным действующим компонентом - продуктом конденсации нафталинсульфокислоты и формальдегида содержит небольшие добавки лигносульфонатов и сульфата натрия. К суперпластификаторам добавляют хлорид, нитрат и глюконат кальция, тиосульфат и бикарбонат натрия, лигносульфонаты, полиоксиэтилен, карбоксиметилцеллюлозу, синтетические микропенообразователи, соли винной кислоты, производные сахаров и другие вещества. Введение в суперпластификаторы дополнительных компонентов: позволяет регулировать сроки схватывания и темп твердения бетона; увеличить сроки сохранения подвижности бетонной смеси; уменьшить водоотделение и расслоение бетонной смеси; регулировать воздухосодержание бетонной смеси, пористую структуру бетона и ее проницаемость и тем самым обеспечивать заданную морозостойкость; повысить плотность, водонепроницаемость и прочность бетона; улучшить качество поверхности бетона; уменьшить расход синтетического продукта и снизить стоимость добавки без ухудшения ее свойств. В зависимости от назначения комплексной добавки подбираются дополнительные компоненты к суперпластификатору. В нашей стране разработаны и внедряются в технологию бетона высокоэффективные комплексные добавки на основе суперпластификаторов. Комплексные добавки, включающие суперпластификатор и ускоритель твердения (С-3+СН,10-03+СН, С-З+ННХК, 10-03+ННХК и др.), сокращают на 20-40% время тепловлажностной обработки, особенно при форсированных режимах обработки, а в некоторых случаях позволяют отказаться от нее. Для экономии суперпластификатора и лучшего сохранения подвижности бетонной смеси во времени применяют стабилизаторы, например СДБ. В производстве сборного железобетона эффективны комплексные добавки 10-03+СДБ+ННХК, 10-03+СДБ+СН и др. Для повышения морозостойкости эффективны комплексные добавки, включающие суперпластификатор и воздухововлекающий компонент (С-З+СНВ, 10-03+СНВ, 10-03+СДБ+СНВ и др.). Для интенсификации твердения в них может вводиться ускоритель твердения, для защиты арматуры от коррозии - ингибитор (С-3+СНВ+ННХК, 10-03+СНВ+ННХК). Применение подобных добавок обеспечивает высокую морозостойкость бетонов, полученных на основе высокоподвижных и литых бетонных смесей. В состав комплексных добавок, предназначенных для повышения коррозионной стойкости железобетонных конструкций в агрессивной среде, включают суперпластификатор, гидрофобизирующую воздухововлекающую добавку и эффективные ингибиторы: нитрит натрия, тетраборат натрия, бихромат калия (С-3+СНВ+НН, 10-03+СНВ+НН, С-З+ГКЖ-10+БК, Ю-03+ГЮК-10+НН). Для значительного увеличения времени сохранения подвижности I тонной смеси (до 3 - 6 ч) к суперпластификаторам добавляют замедлителей схватывания (НТФ, КП). Комплексные добавки на основе суперпластификаторов являются наиболее эффективными и перспективными модификаторами свойств бетонной смеси и бетона. В ближайшие годы применение их в технологии бетона будет развиваться быстрыми темпами.
К комплексным добавкам V группы можно отнести сложные многокомпонентные комплексы, предназначенные для специальных целей. На<
Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...