Обратная геодезическая задача.
Обратная геодезическая задача заключается в том, что по координатам двух точек находят длину и дирекционный угол, соединяющий их линии. Пусть даны координаты точки А и точки В. Прежде всего найдём приращение координат;. Затем по теореме Пифагора вычислим длину стороны: После этого получим величину румба направления АВ: контроль: Возможен другой путь решения задачи, когда, вычислив приращения координат, прежде всего находят румб и дирекционный угол, а уже затем длину стороны: В основу наиболее распространенных способов положен единый принцип, в соответствии с которым на местности строят те или иные геометрические фигуры, позволяющие установить геометрическую связь между точками развиваемых геодезических сетей. Для реализации такой связи в упомянутых фигурах измеряют с необходимой точностью углы и стороны. В зависимости от типа и размеров фигур, используемых для построения сетей, а также от того, какие элементы и с какой точностью в этих фигурах измеряются, различают несколько способов определения координат точек местности. Триангуляция - один из методов создания плановых геодезических сетей на основе построения и решения треугольников по измеренным углам. Триангуляция представляет собой систему примыкающих или перекрывающих друг друга треугольников, которые могут образовывать триангуляционный ряд или триангуляционную сеть. Сторону одного из треугольников измеряют непосредственно или получают косвенным путем, построив так называемую базисную сеть, состоящую, как правило, из ромбов с разными по длине диагоналями. Остальные стороны триангуляционного ряда или сети находят путём последовательного решения треугольников по углам и стороне, используя терему синусов.
Известно, что для решения треугольника достаточно измерить в нём, кроме стороны, два угла. Однако при построении триангуляции в каждом треугольнике измеряют все три угла. Это позволяет проконтролировать результаты угловых измерений и, кроме того, в итоге специальных уравнительных вычислений несколько повысить точность конечного результата. С этой же целью измеряют длину не одной стороны ряда или сети, а двух и более. В случае необходимости в схеме триангуляции предусматривают перекрытие треугольников, что также улучшает качество построения. После того, как будут вычислены длины стороны треугольников, находят координаты их вершин. Для этого в качестве исходных данных необходимо иметь координаты одной из точек и дирекционный угол (азимут) одной из сторон сети. Затем по этим сторонам последовательно решают прямые геодезические задачи и таким образом определяют плановое положение вершин сети. Трилатерация - как и триангуляция, представляет собой построение, состоящее из треугольников. Однако в этих треугольниках измеряют не углы, а длины сторон. Триангуляцию и трилатерацию применяют в тех случаях, когда существует видимость на большие расстояния. Полигонометрия - метод, в основу которого положено поыберем несколько точек, взаимное положение которых определим с самой высокой точностью.борот, должны создаваться в несколько этстроение на местности сомкнутых или разомкнутых многоугольников (ходов), в которых измеряют горизонтальные углы между соседними сторонами и длины сторон. Метод полигонометрии применяют обычно в закрытой местности, где трудно обеспечить видимость на большие расстояния. Геодезические засечки применяют, как правило, для определения координат отдельных точек. В качестве исходных данных используют пункты существующих геодезических сетей, а в качестве измеряемых величин - горизонтальные углы и расстояния.
Плановое положение точки определяется двумя её координатами X, Y, поэтому для реализации любой засечки необходимо измерить, как минимум, две независимые величины (углы, расстояния), каким-либо образом связывающие определяемую точку с исходными пунктами. Наибольшее распространение в практике создания геодезической плановой основы получили прямая и обратная (боковая)угловые засечки, а также задача Потенота (определение положения четвёртой точки по трём данным). Сущность прямой угловой засечки состоит в том, что искомую точку находят как пересечение двух направлений и с твёрдых (исходных) пунктов и. Направления на определяемую точку задают, измерив горизонтальные углы и с исходной стороной. Сначала решают, в результате чего находят длины сторон. Затем вычисляют дирекционные углы этих сторон: Решив прямые геодезические задачи по сторонам и, получают координаты точки: Для того чтобы проконтролировать результат решения прямой угловой засечки, точку «засекают» с какого-нибудь третьего исходного пункта (пункта С) и решают задачу еще раз с новой комбинацией направлений. При выборе исходных пунктов для выполнения засечки руководствуются соображением, что при прочих равных условиях задача решается тем точнее, чем ближе угол к 90. Не допускается выполнять прямую угловую засечку, если этот угол меньше 30 и больше 150. В производственных условиях может оказаться, что один из опорных пунктов, например, недоступен для измерения на нём горизонтального угла. В таком случае прямое направление «засекают» не из исходной точки, а из определяемого пункта «на себя», как бы в обратную сторону, поэтому такую схему определения координат точки называют обратной угловой засечкой. Последовательность и сущность решения обратной угловой засечки совпадает с последовательностью и сущностью решения прямой угловой засечки. Координаты отдельной точки можно получить по схеме, называемой «задачей Потенота», не выполняя никаких измерений на исходных пунктах. Определение координат точки по трём исходным пунктам особенно эффективно, когда эти пункты недоступны для измерения горизонтальных углов. Схема реализуется путём измерения в определяемой точке углов и, образованных направлениями на опорные точки.
Задача может быть решена различными способами: аналитическим, графическим, смешанным. Однако геометрический смысл любого решения состоит в том, что исходная точка получается в пересечении двух окружностей и, из которых первая задана хордой и углом, вторая - хордой и углом. Задача имеет неопределённое решение, если обе окружности полностью совпадут. Это произойдёт в том случае, когда искомая точка находится на «опасной окружности», проходящей через три исходных пункта. В населённом пункте с прямоугольными кварталами или в лесу с просеками для создания плановых геодезических сетей могут применятся построения в виде примыкающих друг к другу четырёхугольников без диагоналей, в которых измеряют стороны и углы. Для определения взаимного положения точек, расположенных на значительном удалении друг от друга, в настоящее время используют методы космической геодезии, основанные на синхронной засечке с определяемых и исходных пунктов искусственных спутников Земли. Особое место в практике построения плановых геодезических сетей на неосвоенных в геодезическом отношении территориях занимают астрономические методы определения координат и азимутов. Результаты таких определений используют в качестве исходных данных для вновь создаваемых геодезических плановых сетей. 3. Классификация государственных плановых геодезических сетей. Государственная плановая геодезическая сеть является главной геодезической основой для выполнения геодезических работ при изысканиях, строительстве и эксплуатации инженерных сооружений, при производстве топографических съёмок, решении научных проблем, а также при обеспечении военных действий. Государственная плановая геодезическая сеть строится в соответствии с принципом перехода от общего к частному и делится на 1, 2, 3, 4 классы, отличающиеся друг от друга по точности измерения углов и линий, размерам сторон и способу закрепления точек на местности.
Государственная сеть 1-го класса служит геодезической основой для построения всех остальных плановых сетей. С помощью этой сети на территории страны вводится единая система координат. Результаты измерения в сетях 1-го класса используются для решения научных геодезических задач. Государственная геодезическая сеть 1-го класса создаётся в виде триангуляционных рядов, прокладываемых вдоль параллелей и меридианов на расстоянии примерно200 км друг от друга. Ряды, идущие вдоль параллелей и меридианов, пересекаясь друг с другом, образуют полигоны периметром 800-1000 км. Каждая из четырёх сторон этого полигона, называемая звеном, состоит из треугольников, близких к равносторонним, с расстоянием между вершинами не менее 20 км. На концах звеньев, т.е. в вершинах полигонов, измеряют длину одной из сторон с относительной погрешностью не более 1:400 000. в пунктах лежащих на концах таких сторон, выполняют астрономические измерения широты, долготы и азимута. Горизонтальные углы в треугольниках 1-го класса измеряют высокоточными теодолитами со средней квадратической погрешностью 0.7``. в тех районах, где по условиям местности построение триангуляции сопряжено со значительными трудностями, её заменяют ходами полигонометрии 1-го класса. Государственная сеть 2-го класса делается сплошной. Она заполняет собой полигоны 1-го класса и опирается на их пункты. Треугольники имеют стороны длиной 7-20 км. Горизонтальные углы в треугольниках сети измеряют со средней квадратической погрешностью 1.0``, а стороны - с относительной ошибкой не более 1:300 000. измеряемые стороны располагают равномерно по всей сети, но не реже, чем через 25 треугольников. Допускается замена триангуляции полигонометрическими ходами 2-го класса. Государственные сети 3-го и 4-го классов предназначены для сгущения сети пунктов 1 и 2 классов. Их строят в виде вставок отдельных пунктов в существующую сеть более высоких классов. Длины сторон треугольников сети 3-го и 4-го классов составляют соответственно 5-8 км и 2-5 км при относительной погрешности измеряемых сторон не более 1:200 000. углы измеряют со средней квадратической погрешностью 1.5 и 2. вместо триангуляции разрешается применять полигонометрические ходы 3 и 4 классов. Закрепление на местности пунктов государственной геодезической плановой сети выполняется специальными устойчивыми и долговременными центрами. В зависимости от характера грунта и других физико-географических условий местности применяют различные конструкции центров. Важнейшей частью любого центра является чугунная марка с небольшим, расположенном посередине, отверстием, которое обозначает закрепляемую точку геодезической сети. Каждый центр имеет несколько дублирующих друг друга чугунных марок, расположенных на разной глубине, но на одной отвесной линии.
Поскольку в государственных геодезических сетях расстояния между пунктами составляют от двух до двадцати и более километров, то обеспечить видимость между такими пунктами с земли невозможно. Кроме того, атмосфера в непосредственной близости от земли существенно влияет на погрешности результатов измерений. По этим причинам на пунктах государственных плановых геодезических сетей строят специальные сооружения, геодезические сигналы или пирамиды. С помощью геодезических сигналов теодолит при измерении углов устанавливается высоко над землёй. Для геодезиста на уровне, удобном для работы с теодолитом, сооружается специальная площадка с ограждением, лестницей и крышей. На крыше устанавливается визирный барабан для наведения на данную точку со смежных пунктов сети. По конструкции сигналы делятся на простые и сложные. Простые сигналы имеют высоту до 15 м, сложные - 40 м и более. Геодезические пирамиды устроены более просто. Их высота, как правило, не превышает 10 м. материалом для изготовления сигналов и пирамид обычно служит дерево и металл. Каталоги координат пунктов плановых геодезических сетей являются основным итоговым документом работ по созданию главной геодезической основы. Они составляются в соответствии с установленными требованиями и содержат сведения о названии пунктов, их классе и местоположении, типе центра и знака, даты их постройки. Координаты пункта приводятся в каталоге с указанием системы координат, в которой они получены. Кроме того, в каталог вписывают длины и дирекционные углы сторон сети. Каталоги хранятся в подразделениях ГУГК СССР, Госкартфонде и Госгеонадзоре. По специальным запросам организаций, выполняющих те или иные геодезические работы, делаются выписки из каталогов на указанную в запросе территорию.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|