Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Метод электронных уравнений.




Контрольная работа по химии №5: Окислительно-восстановительные процессы.

(методические указания)

Основные понятия.

Окислительно- восстановительный процесс представляет собой совокупность процессов окисления и восстановления, протекающих одновременно. Окисление – это процесс отдачи электронов, восстановление – процессих присоединения. Степень окисления атомов, отдающих электроны, повышается, а при присоединении электронов степень окисления атомов, наоборот, понижается. Таким образом, отличительным признаком окислительно-восстановительных процессов является изменение степени окисления атомов окисляющегося и восстанавливающегося элемента.

Частицы вещества(атомы, молекулы, ионы), отдающие электроны, называются восстановителями, а частицы, присоединяющие электроны – окислителями. Окислитель, присоединяя электроны, превращается в соответствующий восстановитель и наоборот, в результате отдачи электронов восстановителем образуется соответствующий окислитель, т.е. соответствующие окислитель и восстановитель образуют единую окислительно- восстановительнуюпару ОК/ВС, где ОК – окислитель, ВС – соответствующий восстановитель. Взаимные превращения окислителя ОК в соответствующий восстановитель ВС, а также восстановителя ВС в соответствующий окислитель ОК можно выразить схемой: ОК+neÛВС, где n – количество электронов е. Например, для окислительно- восстановительной пары Zn2+|Zn взаимные превращения окислителя и восстановителя выражаются уравнением: Zn2++2eÛZn; для пары (MnO4-+8H+)/(Mn2++4H2O) уравнение взаимного превращения имеет вид: MnO4-+8H++5еÛMn2++4H2O.

Сущность окислительно-восстановительного процесса заключается в передаче электронов восстановителемокислителю. Окислительно-восстановительный процесс можно осуществить двумя способами: в форме окислительно-восстановительной реакции при непосредственном контакте окислителя с восстановителем и в форме электрохимического процесса с пространственно разделёнными процессами окисления и восстановления, протекающими на электродах.

Электрод представляет собой систему, включающую проводник электронов и окислительно-восстановительную пару. Поэтому для обозначения электрода достаточно указать окислительно- восстановительную пару ОК/ВС, например, Zn2+|Zn, (MnO4-+8H+)/(Mn2++4H2O). В любом электроде могут протекать 2 процесса: восстановление окислителя ОК+ne=ВС и окисление восстановителя ВС=ОК+ne. Электрод называется анодом,еслив нём протекает процесс окисления, и катодом, если в нём реализуется восстановительный процесс. Характер электродного процесса зависит от относительной активности окислителя и восстановителя пары, которая количественно характеризуется величиной стандартного электродного потенциала Ео: чем больше значение Ео, тем выше активность окислителя и тем ниже активность соответствующего восстановителя.

Пример 1.1. Активность окислителей и восстановителей окислительно-восстановительных пар Zn2+/Zn и (MnO4-+8H+)/(Mn2++4H2O).

Из таблицы стандартных электродных потенциалов выписываем их значения для рассматриваемых пар: Ео(Zn2+/Zn)=-0,76В; Ео((MnO4-+8H+)/(Mn2++4H2O))= 1.51В. Сопоставляя значения Ео, приходим к выводу, что в рассматриваемых окислительно-восстановительных парах наиболее сильным окислителем является MnO4-+8H+, а наиболее активным восстановителем – Zn.

В окислительно-восстановительном процессе восстановитель, отдавая электроны, превращается в соответствующий окислитель, а окислитель вследствие присоединения электронов образует соответствуюший восстановитель. Естественно, что образующиеся новый окислитель и новый восстановитель способны вступать друг с другом в окислительно-восстановительное взаимодействие. Поэтому любой окислительно-восстановительный процесс обратим и может быть выражен следующей схемой: ВСI+ОКIIÛОКI+ВСII, где индексы ”I” и “II” относятся к первой и второй окислительно-восстановительным парам.

Как и в любом обратимом процессе, возможность самопроизвольного взаимодействия в окислительно-восстановительном процессе определяется условием LG<0. Для окислительно-восстановительных процессов имеет место соотношение:

LG=-nFE (1.1)

где n – число электронов, F»96500Кл – число Фарадея, Е – разность электродных потенциалов окислителя ЕОК и восстановителя ЕВС. Из формулы (1.1) вытекает, что условием самопроизвольного протекания окислительно-восстановительного процесса является:

Е>0 или ЕОКВС (1.2)

Пример 1.2. Определение возможности самопроизвольного протекания окислительно- восстановительного процесса Zn+Sn2+=Zn2++Sn.

В рассматриваемом процессе Zn – восстановитель, ионы Sn2+ - окислитель.

Из таблицы стандартных электродных потенциалов выписываем их значения для окислительно- восстановительных пар, включающих данные окислитель и восстановитель: Ео(Zn2+/Zn)=-0,76В, Ео(Sn2+/Sn)=-0,14В. Находим стандартную разность потенциалов: ЕооОК - ЕоВС= Ео(Sn2+/Sn)- Ео(Zn2+/Zn)=-0,14-(-0,76)=0,62В>0, что удовлетворяет условию (1.2). Следовательно, рассматриваемый окислительно-восстановительный процесс может протекать самопроизвольно.

Составление уравнений окислительно-восстановительных реакций.

В любом окислительно-восстановительном процессе общее количество электронов, отданных восстановителем, равно числу электронов, присоединённых окислителем. Это положение лежит в основе методов составления уравнений реакций окисления-восстановления: метода электронных уравнений (электронного баланса) и метода электронно-ионных уравнений (электронно-ионного баланса).

Метод электронных уравнений.

(задачи №№ 1 – 20)

Метод позволяет определить стехиометрические коэффициенты только четырёх участников окислительно- восстановительной реакции: окислителя и восстановителя, продуктов окисления и восстановления.

Первоначально записывается молекулярная схема реакции и определяется степень окисления атомов до и после реакции. Затем для атомов, степень окисления которых изменяется, записываются электронные уравнения окисления и восстановления, после чего по числу отдаваемых и присоединяемых электронов находятся коэффициенты для процессов окисления и восстановления. Наконец, производится суммирование электронных уравнений с учётом найденных коэффициентов, в результате чего получают уравнение окисления- восстановления атомов, из которого стехиометрические коэффициенты переносят в молекулярную схему реакции. На завершающем этапе уравнивают количество атомов, не фигурирующих в электронных уравнениях, и производят окончательную расстановку коэффициентов.

Пример 2.1.1. Составление уравнения реакции окисления-восстановления, протекающей по схеме: Al+H2SO4ÞAl2(SO4)3+H2­.

Определяем степень окисления атомов до и после реакции.

0 +1 +6 –2 +3 +6 –2 0

Al+H2SO4ÞAl2(SO4)3+H2­.

Записываем электронные уравнения, определяем коэффициенты для процесса окисления и восстановления (слева от вертикальной черты), суммируем электронные уравнения с учётом найденных коэффициентов и записываем уравнение окисления- восстановления атомов.

  0 +3
  Al=Al+3e - уравнение окисления восстановителя Al.
  +1 0 +1
  H+e=H - уравнение восстановления окислителя Н.
  0 +1 +3 0  
  Al+3H=Al+3H - уравнение окисления-восстановления.

Коэффициенты из уравнения окисления-восстановления атомов переносим в молекулярную схему: Al+1,5H2SO4Þ0,5Al2(SO4)3+1,5H2­

Т.к. в уравнениях реакций принято использовать целочисленные стехиометрические коэффициенты, произведём их удваивание и запишем новую схему реакции: 2Al+3H2SO4ÞAl2(SO4)3+3H2­. После проверки в записанной молекулярной схеме количества атомов, не участвующих в окислительно- восстановительном процессе (атомов S и O), приходим к выводу, что данная схема представляет собой уравнение реакции, которое и записываем в окончательном виде: 2Al+3H2SO4=Al2(SO4)3+3H2­.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...